Startseite Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates

  • Dagmar Gerthsen EMAIL logo , David Bach , Virginie De Pauw , Sabine Kalhöfer , Boris Reznik und Winfried Send
Veröffentlicht/Copyright: 12. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The structure of the fiber –matrix interface region of carbon-fiber/carbon-matrix (C/C)-composites, which is important for the mechanical properties of a composite, was studied by transmission electron microscopy. The pyrolytic carbon matrix was obtained by chemical vapor infiltration of carbon fiber preforms with different fiber architecture and fiber types. While the texture of the carbon matrix can be controlled by the infiltration conditions, the carbon texture at the fiber –matrix interface differs from the bulk matrix and cannot be determined by the infiltration parameters. We often observe a high-textured layer with a thickness up to 100 nm at the interface prior to the formation of the bulk matrix with a lower texture. The fiber –matrix interface properties of C/C-composites are compared with the interface of pyrolytic carbon layers deposited on planar Si-, BN- and cordierite-substrates. In contrast to BN-substrates, thin high-textured pyrolytic layers are observed at the interface of carbon on planar Si- and cordierite-substrates where strong bonding between pyrolytic carbon and the substrate is achieved by the formation of Si-C bonds. Stress-induced ordering is discussed as a mechanism for the formation of the high-textured interface layers.


Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday



Prof. Dr. Dagmar Gerthsen Laboratorium für Elektronenmikroskopie Universität Karlsruhe 76128 Karlsruhe, Germany Tel.: +49 721 608 3200 Fax: +49 721 608 3721

Funding statement: This research was performed in the Collaborative Research Center 551 (University of Karlsruhe) which is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft)

References

[1] J.C. Bokros, in: P.A. Thrower, L.R. Radovic (Eds.), Physics and Chemistry of Carbon, Vol. 5, Marcel Dekker, (1968) 1.Suche in Google Scholar

[2] H.O. Pierson, M.L. Lieberman: Carbon 13 (1975) 159.10.1016/0008-6223(75)90226-2Suche in Google Scholar

[3] O. Feron, F. Langlais, R. Naslain, J. Thebault: Carbon 37 (1999) 1343.10.1016/S0008-6223(98)00329-7Suche in Google Scholar

[4] G.L. Dong, K.J. Hüttinger: Carbon 40 (2002) 2515 and Z.J. Hu, W.G. Zhang, K.J. Hüttinger, B. Reznik, D. Gerthsen: Carbon 41 (2003) 749.10.1016/S0008-6223(02)00174-4Suche in Google Scholar

[5] J. Cook, J.E. Gordon: Proc. Roy. Soc. London A 282 (1964) 508.10.1098/rspa.1964.0248Suche in Google Scholar

[6] E. Bruneton, B. Narcy, A. Oberlin: Carbon 35 (1997) 1599.10.1016/S0008-6223(97)00119-XSuche in Google Scholar

[7] W.G. Zhang, Z.J. Hu, K.J. Hüttinger: Carbon 40 (2002), 2529.10.1016/S0008-6223(02)00206-3Suche in Google Scholar

[8] D. Bach, B. Reznik, D. Gerthsen, M. Guellali, in: A. Linares-Solano (Ed.), an International Conference on Carbon, Oviedo, Spain, CD-ROM ISBN 84-607-8305-7 (2003).Suche in Google Scholar

[9] V. De Pauw, B. Reznik, S. Kalhöfer, D. Gerthsen, K.J. Hüttinger: An International Conference on Carbon, Lexington, USA, Ed. by American Carbon Society, CD-ROM ISBN-0-9674971-2-4 (2001).Suche in Google Scholar

[10] X. Bourrat, B. Trouvat, G. Limousin, G. Vignoles, F. Doux: J. Mater. Res. 15 (2000) 92.10.1557/JMR.2000.0017Suche in Google Scholar

[11] B. Reznik, K.J. Hüttinger: Carbon 40 (2002) 621.10.1016/S0008-6223(01)00282-2Suche in Google Scholar

[12] A. Tressaud, M. Chambon, V. Gupta, S. Flandrois, O.P. Bahl: Carbon 33 (1995) 1339.10.1016/0008-6223(95)00088-USuche in Google Scholar

[13] L. Reimer, in: L. Reimer (Ed.), Energy-Filtering Transmission Electron Microscopy, Springer (1995) 347.10.1007/978-3-540-48995-5_7Suche in Google Scholar

[14] B. Reznik, S. Kalhöfer: Micron 33 (2002) 105.10.1016/S0968-4328(00)00063-9Suche in Google Scholar

[15] B. Reznik, D. Gerthsen, W.G. Zhang, K.J. Hüttinger: Carbon 41 (2003) 369.10.1016/S0008-6223(02)00338-XSuche in Google Scholar

[16] Y. Hishiyama, M. Inagaki, S. Kimura, S. Yamada: Carbon 12 (1974) 249.10.1016/0008-6223(74)90067-0Suche in Google Scholar

[17] G.S. Rellik, D.J. Chang, R.J. Zaldivar: J. Mater. Res. 7 (1992) 2798.10.1557/JMR.1992.2798Suche in Google Scholar

[18] Z.J. Hu, K.J. Hüttinger: Carbon 40 (2002) 617.10.1016/S0008-6223(01)00274-3Suche in Google Scholar

[19] B. Reznik, K. Norinaga, D. Gerthsen, O. Deutschmann: Carbon 44 (2006) 1330.10.1016/j.carbon.2005.12.014Suche in Google Scholar

[20] R. Piat, E. Schnack: Key Engineering Materials 251–252 (2003) 333.10.4028/www.scientific.net/KEM.251-252.333Suche in Google Scholar

[21] Thermal expansion coefficients of different carbon fibers: http://www.goodfellow.com/csp/active/static/A/Carbon.HTMLSuche in Google Scholar

[22] K.-M. Beinborn, M. Müller, K.J. Hüttinger: Carbon 33 (1995) 1029.10.1016/0008-6223(95)00031-8Suche in Google Scholar

Received: 2006-01-11
Accepted: 2006-04-03
Published Online: 2022-02-12

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Professor Dr. Knut Urban 65 Years
  4. Basic
  5. Ordering processes and atomic defects in FeCo
  6. Atomic resolution electron tomography: a dream?
  7. Electron tomography of microelectronic device interconnects
  8. Aberration correction in electron microscopy
  9. Off-axis electron holography: Materials analysis at atomic resolution
  10. Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
  11. Prospects of the multislice method for CBED pattern calculation
  12. Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
  13. Quantitative assessment of nanoparticle size distributions from HRTEM images
  14. Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
  15. Structural domains in antiferromagnetic LaFeO3 thin films
  16. Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
  17. Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
  18. Dislocation imaging in fcc colloidal single crystals
  19. Applied
  20. Omega phase transformation – morphologies and mechanisms
  21. Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
  22. Wetting of aluminium-based complex metallic alloys
  23. Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
  24. Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
  25. On the formation of Si nanowires by molecular beam epitaxy
  26. Self-induced oscillations in Si and other semiconductors
  27. Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
  28. An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
  29. Radiation damage during HRTEM studies in pure Al and Al alloys
  30. Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
  31. Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
  32. Microstructure and properties of surface-treated Timetal 834
  33. Notifications
  34. Personal
  35. Conferences
Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0165/pdf
Button zum nach oben scrollen