Abstract
Some metals share an elusive property with silicon (and other semiconductors): they may exhibit strong self-induced current oscillations during anodic dissolution in electrochemical experiments. While this feature, as well as related features concerning self-organization at reactive solid-liquid interfaces, is still not well understood, the so-called “current-burst model” of the authors succeeded in reproducing many effects quantitatively that have been observed at the Si electrode. The current-burst model assumes that current flow through the electrode on a nm scale is inhomogeneous in both time and space; a single current-burst is a stochastic event. Current oscillations in time and space result from interactions in space or time of single current-bursts. The paper outlines the basics of the model and gives results of Monte Carlo simulations concerning stable and damped oscillations for the current and, as a new feature, for the voltage. With the current-burst model a kind of “nano”-electrochemistry is introduced; its strengths, weaknesses, and possible implications for other electrochemical phenomena and for other materials are briefly discussed.
Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday
Funding statement: The authors gratefully acknowledge contributions and discussions with Drs. S. Frey, G. Hasse, G. Popkirov, and a fruitful and frank exchange of ideas with Drs. J. Grzanna, H. Jungblut and H.-J. Lewerenz
References
[1] X.G. Zhang: Electrochemistry of silicon and its oxide, Kluwer Academic – Plenum Publishers, New York (2001).Suche in Google Scholar
[2] V. Lehmann: Electrochemistry of silicon, Wiley-VCH, Weinheim (2002).10.1002/3527600272Suche in Google Scholar
[3] H. Föll, M. Christophersen, J. Carstensen, G. Hasse: Mater. Sci. Eng. R 39 (4) (2002) 93.10.1016/S0927-796X(02)00090-6Suche in Google Scholar
[4] H. Föll, S. Langa, J. Carstensen, M. Christophersen, I.M. Tiginyanu: Adv. Mater. 15 (2003) 183.10.1002/adma.200390043Suche in Google Scholar
[5] C. Fang, H. Föll, J. Carstensen: J. Electroanal. Chem., to be published.Suche in Google Scholar
[6] A.J. Sedriks: Corrosion of Stainless Steels, JohnWiley, New York (1996).Suche in Google Scholar
[7] M. Faraday: Phil. Trans. Roy. Soc. Ser. A 124 (1834) 77.10.1098/rstl.1834.0008Suche in Google Scholar
[8] IUPAC manual of symbols and technology, Appendix 2, Part 1, Pure and Appl. Chem. 31 (1972) 578.Suche in Google Scholar
[9] L.T. Canham, M.P. Stewart, J.M. Buriak, C.L. Reeves, M. Anderson, E.K. Squire, P. Allcock, P.A. Snow: Phys. Stat. Sol. (a) 182 (1) (2000) 521.10.1002/1521-396X(200011)182:1<521::AID-PSSA521>3.0.CO;2-7Suche in Google Scholar
[10] L.T. Canham, A. Nassiopoulou, V. Parkhutik (Eds.): Phys. stat. sol (a) 197 (2003).10.1002/pssa.200390006Suche in Google Scholar
[11] L.T. Canham, A. Nassiopoulou, V. Parkhutik (Eds.): Phys. Stat. Sol. (a) 202 (8) (2005).Suche in Google Scholar
[12] P. Schiffer: Nature 35 (2002) 420.10.1038/420035aSuche in Google Scholar
[13] A.P. Ramirez: MRS Bull. 30 (2005) 447.10.1557/mrs2005.122Suche in Google Scholar
[14] S. Langa, M. Christophersen, J. Carstensen, I.M. Tiginyanu, H. Föll: Phys. Stat. Sol. (a) 195 (2003) R4.10.1002/pssa.200306456Suche in Google Scholar
[15] A.M. Zhabotinsky: Biofizika 9 (1964) 306.Suche in Google Scholar
[16] A.N. Zaikin, A.M. Zhabotinsky: Nature 225 (1970) 535.10.1038/225535b0Suche in Google Scholar
[17] P.J. Sides, C.W. Tobias: J. Electrochem. Soc. 132 (3) (1985) 583.10.1149/1.2113910Suche in Google Scholar
[18] Y. Mukouyama, S. Nakanishi, H. Konishi, Y. Ikeshima, Y. Nakato: J. Phys. Chem. B 105 (44) (2001) 10905.10.1021/jp012461sSuche in Google Scholar
[19] V.P. Parkhutik, E. Matveeva: Electrochemical and Sol. State Lett. 2 (1999) 371.10.1149/1.1390841Suche in Google Scholar
[20] V. Parkhutik: Mater. Sci. Eng. B 88 (2002) 269.10.1016/S0921-5107(01)00877-7Suche in Google Scholar
[21] O. Nast, S. Rauscher, H. Jungblut, H.-J. Lewerenz: J. Electroanal. Chem. 442 (1998) 169.10.1016/S0022-0728(97)00476-2Suche in Google Scholar
[22] V. Lehmann: ECS Meeting Abtracts MA 96-2 (1996) 228.Suche in Google Scholar
[23] F. Ozanam, J.-N. Chazalviel, A. Radi, M. Etman: Ber. Bunsenges. Phys. Chem. 95 (1991) 98.10.1002/bbpc.19910950118Suche in Google Scholar
[24] J. Stumper, R. Greef, L.M. Peter: J. Electroanal. Chem. 310 (1991) 445.10.1016/0022-0728(91)85281-SSuche in Google Scholar
[25] J. Carstensen, R. Prange, G.S. Popkirov, H. Föll: Appl. Phys. A 67 (1998) 459.10.1007/s003390050804Suche in Google Scholar
[26] J. Carstensen, R. Prange, H. Föll: J. Electrochem. Soc. 146 (1999) 1134.10.1149/1.1391734Suche in Google Scholar
[27] G. Hasse, J. Carstensen, G.S. Popkirov, H. Föll: Mater. Sci. Eng. B 69–70 (2000) 188.10.1016/S0921-5107(99)00259-7Suche in Google Scholar
[28] H. Gerischer, M. Lübke: Ber. Bunsenges. Phys. Chem. 92 (1988) 573.10.1002/bbpc.198800138Suche in Google Scholar
[29] H. Föll: Appl. Phys. A 53 (1991) 8.10.1007/BF00323428Suche in Google Scholar
[30] R.L. Smith, S.D. Collins: J. Appl. Phys. 71 (1992) R1.10.1063/1.350839Suche in Google Scholar
[31] H.-J. Lewerenz, M. Aggour: J. Electroanal. Chem. 351 (1993) 159.10.1016/0022-0728(93)80231-6Suche in Google Scholar
[32] V. Lehmann: J. Electrochem. Soc. 143 (1996) 1313.10.1149/1.1836636Suche in Google Scholar
[33] J.-N. Chazalviel, F. Ozanam, M. Etman, F. Paolucci, L.M. Peter, J. Stumper: J. Electroanal. Chem. 327 (1992) 343.10.1016/0022-0728(92)80160-6Suche in Google Scholar
[34] J. Carstensen, M. Christophersen, G. Hasse, H. Föll: Phys. Stat. Sol. (a) 182 (1) (2000) 63.10.1002/1521-396X(200011)182:1<63::AID-PSSA63>3.0.CO;2-ESuche in Google Scholar
[35] H. Föll, J. Carstensen, M. Christophersen, G. Hasse: Phys. Stat. Sol. (a) 182 (1) (2000) 7.10.1002/1521-396X(200011)182:1<7::AID-PSSA7>3.0.CO;2-BSuche in Google Scholar
[36] U.F. Frank: Angew. Chem. 90 (1978) 1.10.1002/ange.19780900104Suche in Google Scholar
[37] J. Grzanna, H. Jungblut, H.J. Lewerenz: J. Electroanal. Chem. 486 (2000) 181.10.1016/S0022-0728(00)00141-8Suche in Google Scholar
[38] J. Grzanna, H. Jungblut, H.J. Lewerenz: J. Electroanal. Chem. 486 (2000) 190.10.1016/S0022-0728(00)00142-XSuche in Google Scholar
[39] Monte Carlo simulation of Current Burst Model, http://www.tf.uni-kiel.de/matwis/amat/osc_model/index.html.Suche in Google Scholar
[40] S. Frey, B. Grésillion, F. Ozanam, J.-N. Chazalviel, J. Carstensen, H. Föll, R.B. Wehrspohn: Electrochem. Sol. State Lett. 8 (2005), B 25.10.1149/1.1960024Suche in Google Scholar
© 2006 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Professor Dr. Knut Urban 65 Years
- Basic
- Ordering processes and atomic defects in FeCo
- Atomic resolution electron tomography: a dream?
- Electron tomography of microelectronic device interconnects
- Aberration correction in electron microscopy
- Off-axis electron holography: Materials analysis at atomic resolution
- Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
- Prospects of the multislice method for CBED pattern calculation
- Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
- Quantitative assessment of nanoparticle size distributions from HRTEM images
- Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
- Structural domains in antiferromagnetic LaFeO3 thin films
- Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
- Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
- Dislocation imaging in fcc colloidal single crystals
- Applied
- Omega phase transformation – morphologies and mechanisms
- Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
- Wetting of aluminium-based complex metallic alloys
- Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
- Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
- On the formation of Si nanowires by molecular beam epitaxy
- Self-induced oscillations in Si and other semiconductors
- Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
- An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
- Radiation damage during HRTEM studies in pure Al and Al alloys
- Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
- Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
- Microstructure and properties of surface-treated Timetal 834
- Notifications
- Personal
- Conferences
Artikel in diesem Heft
- Frontmatter
- Editorial
- Professor Dr. Knut Urban 65 Years
- Basic
- Ordering processes and atomic defects in FeCo
- Atomic resolution electron tomography: a dream?
- Electron tomography of microelectronic device interconnects
- Aberration correction in electron microscopy
- Off-axis electron holography: Materials analysis at atomic resolution
- Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
- Prospects of the multislice method for CBED pattern calculation
- Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
- Quantitative assessment of nanoparticle size distributions from HRTEM images
- Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
- Structural domains in antiferromagnetic LaFeO3 thin films
- Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
- Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
- Dislocation imaging in fcc colloidal single crystals
- Applied
- Omega phase transformation – morphologies and mechanisms
- Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
- Wetting of aluminium-based complex metallic alloys
- Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
- Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
- On the formation of Si nanowires by molecular beam epitaxy
- Self-induced oscillations in Si and other semiconductors
- Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
- An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
- Radiation damage during HRTEM studies in pure Al and Al alloys
- Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
- Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
- Microstructure and properties of surface-treated Timetal 834
- Notifications
- Personal
- Conferences