Abstract
Silicon nanowires can be successfully grown by applying the vapor – liquid – solid process. In the case of the commonly used chemical vapor deposition technique, a Si containing gas/precursor is cracked at Au droplets acting as seeds. Si adatoms are subsequently dissolved in the liquid metal. Due to a supersaturation within this droplet, Si precipitates predominantly at the liquid – solid interface – a nanowire grows. A different situation occurs if nanowires are grown by molecular beam epitaxy via the vapor– liquid – solid mechanism. The difference consists, for example, of the role of the metal seed, the morphology of the nanowires and their aspect ratio. In particular, surface diffusion including the metal used as well as Si, strongly influences the growth process. This article describes molecular beam epitaxy growth experiments of Si nanowires under ultra-high vacuum conditions and compares the results with other growth techniques.
Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday
Funding statement: The authors would like to thank A. Frommfeld for the support of the MBE experiments, F. Syrowatka and S. Hofmann for SEM analysis, S. Hopfe for TEM specimen preparation, and M. Werner for specific TEM analysis. The author L. Schubert appreciates the financial support of the Deutsche Forschungsgemeinschaft (Graduierten-Kolleg). The work was also partly supported by European project NODE (FP6/015783)
References
[1] Y. Nakajiama, Y. Takahashi, S. Horiguchi, K. Iwadate, H. Namatsu, K. Kurihara, M. Tabe: Appl. Phys. Lett. 65 (1994) 2833.10.1063/1.112991Suche in Google Scholar
[2] N. Usami, T. Mine, S. Fukatsu, Y. Shiraki: Appl. Phys. Lett. 64 (1994) 1126.10.1063/1.110827Suche in Google Scholar
[3] J.L. Liu, Y. Shi, F. Wang, Y. Lu, R. Zhang, P. Han, S.L. Gu, Y.D. Zheng: Appl. Phys. Lett. 68 (1996) 352.10.1063/1.116713Suche in Google Scholar
[4] C.M. Lieber: MRS Bulletin 28 (2003) 128.10.1557/mrs2003.144Suche in Google Scholar
[5] R.S. Wagner, W.C. Ellis, K. Jackson, S.M. Arnold: J. Appl. Phys. 35 (1964) 2993.10.1063/1.1713143Suche in Google Scholar
[6] R.S.Wagner, W.C. Ellis: Transaction of the Metallurgical Society of AIME 233 (1965) 1053.Suche in Google Scholar
[7] E.I. Givargizov: J. Cryst. Growth 31 (1975) 20.10.1016/0022-0248(75)90105-0Suche in Google Scholar
[8] R.S. Wagner a, W.C. Ellis: Appl. Phys. Lett. 4 (1964) 89.10.1063/1.1753975Suche in Google Scholar
[9] Y. Cui, L.J. Lauhon, M. Gudiksen, J. Wang, C.M. Lieber: Appl. Phys. Lett. 78 (2001) 2214.10.1063/1.1363692Suche in Google Scholar
[10] J.Westwater, D.P. Gosain, S. Tomiya, S. Usui: J. Vac. Sci. Technol. B 15 (1997) 554.10.1116/1.589291Suche in Google Scholar
[11] Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber: Nano Lett. 4 (2004) 433.10.1021/nl035162iSuche in Google Scholar
[12] J. Westwater, D.P. Gosain, S. Usui: Phys. Stat. Sol. A 165 (1998) 37.10.1002/(SICI)1521-396X(199801)165:1<37::AID-PSSA37>3.0.CO;2-ZSuche in Google Scholar
[13] Q. Tang, X. Liu, T.I. Kamins, G.S. Salomon, J.S. Harris: Appl. Phys. Lett. 81 (2002) 2451.10.1063/1.1509096Suche in Google Scholar
[14] J.L. Liu, S.J. Cai, G.L. Jin, Y.S. Tang, K.L.Wang: Supp. Microstr. 25 (1999) 477.10.1006/spmi.1998.0678Suche in Google Scholar
[15] P. Finnie, Y. Homma: J. Cryst. Growth 201/202 (1999) 604.10.1016/S0022-0248(98)01420-1Suche in Google Scholar
[16] J.L. Liu, S.J. Cai, G.L. Jin, S.G. Thomas, K.L. Wang: J. Cryst. Growth 200, (1999) 106.10.1016/S0022-0248(98)01408-0Suche in Google Scholar
[17] Y-H. Yang, S.-J Wu, H.-S. Chiu, P.-I. Lin, Y.-T. Chen: J. Phys. Chem. B 108, 846 (2004)10.1021/jp030663dSuche in Google Scholar
[18] F.M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gösele, D.D. Ma, S.T. Lee: J. Electrochem. Soc. 151 (2004) 375.10.1149/1.1759365Suche in Google Scholar
[19] M. Borgström, K. Deppert, L. Samuelson, W. Seifert: J. Cryst. Growth 260 (2004) 18.10.1016/j.jcrysgro.2003.08.009Suche in Google Scholar
[20] T. Martenson, M. Borgström, W. Seifert, B.J. Ohlsson, L. Samuelson: Nanotechn. 14 (2003) 1255.10.1088/0957-4484/14/12/004Suche in Google Scholar
[21] H.D. Park, T.P. Hogan: J. Vac. Soc. Technol. B 22 (2004) 237.10.1116/1.1643401Suche in Google Scholar
[22] Z.H. Wu, X.Y. Mei, D. Kim, M. Blumin, H.E. Ruda: Appl. Phys. Lett. 81 (2002) 5177.10.1063/1.1532772Suche in Google Scholar
[23] F.M. Ross, J. Tersoff, M.C. Reuter: Phys. Rev. Lett. 95 (2005) 146104.10.1103/PhysRevLett.95.146104Suche in Google Scholar
[24] L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F. Kolb, L. Long, U. Gösele, T.Y. Tan: Appl. Phys. Lett. 84 (2004) 4968.10.1063/1.1762701Suche in Google Scholar
[25] L. Schubert, N.D. Zakharov, G. Gerth, H.S. Leipner, P. Werner, U. Gösele: Proc. DPG Meeting, Berlin 2005.Suche in Google Scholar
[26] I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35.10.1016/0022-3697(61)90054-3Suche in Google Scholar
[27] C. Wagner: Zeitschrift für Elektrochemie 65 (1961) 581.10.1002/bbpc.19610650704Suche in Google Scholar
[28] S. Ino: Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces, NATO ASI Series B, Plenum Press, New York (1988).Suche in Google Scholar
[29] N.D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, U. Gösele: J. Cryst. Growth 290 (2006) 6.10.1016/j.jcrysgro.2005.12.096Suche in Google Scholar
[30] B. Fuhrmann, H.S. Leipner, H.-R. Höche, L. Schubert, P. Werner, U. Gösele: Nano Lett. 5 (2005) 2524.10.1021/nl051856aSuche in Google Scholar PubMed
© 2006 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Professor Dr. Knut Urban 65 Years
- Basic
- Ordering processes and atomic defects in FeCo
- Atomic resolution electron tomography: a dream?
- Electron tomography of microelectronic device interconnects
- Aberration correction in electron microscopy
- Off-axis electron holography: Materials analysis at atomic resolution
- Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
- Prospects of the multislice method for CBED pattern calculation
- Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
- Quantitative assessment of nanoparticle size distributions from HRTEM images
- Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
- Structural domains in antiferromagnetic LaFeO3 thin films
- Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
- Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
- Dislocation imaging in fcc colloidal single crystals
- Applied
- Omega phase transformation – morphologies and mechanisms
- Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
- Wetting of aluminium-based complex metallic alloys
- Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
- Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
- On the formation of Si nanowires by molecular beam epitaxy
- Self-induced oscillations in Si and other semiconductors
- Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
- An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
- Radiation damage during HRTEM studies in pure Al and Al alloys
- Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
- Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
- Microstructure and properties of surface-treated Timetal 834
- Notifications
- Personal
- Conferences
Artikel in diesem Heft
- Frontmatter
- Editorial
- Professor Dr. Knut Urban 65 Years
- Basic
- Ordering processes and atomic defects in FeCo
- Atomic resolution electron tomography: a dream?
- Electron tomography of microelectronic device interconnects
- Aberration correction in electron microscopy
- Off-axis electron holography: Materials analysis at atomic resolution
- Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
- Prospects of the multislice method for CBED pattern calculation
- Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
- Quantitative assessment of nanoparticle size distributions from HRTEM images
- Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
- Structural domains in antiferromagnetic LaFeO3 thin films
- Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
- Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
- Dislocation imaging in fcc colloidal single crystals
- Applied
- Omega phase transformation – morphologies and mechanisms
- Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
- Wetting of aluminium-based complex metallic alloys
- Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
- Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
- On the formation of Si nanowires by molecular beam epitaxy
- Self-induced oscillations in Si and other semiconductors
- Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
- An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
- Radiation damage during HRTEM studies in pure Al and Al alloys
- Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
- Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
- Microstructure and properties of surface-treated Timetal 834
- Notifications
- Personal
- Conferences