The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research
Abstract
Mycotoxins are fungal metabolites that can cause various diseases in humans and animals. The adverse health effects of mycotoxins such as liver failure, immune deficiency, and cancer are well-described. However, growing evidence suggests an additional link between these fungal metabolites and neurodegenerative diseases. Despite the wealth of these initial reports, reliable conclusions are still constrained by limited access to human patients and availability of suitable cell or animal model systems. This review summarizes knowledge on mycotoxins associated with neurodegenerative diseases and the assumed underlying pathophysiological mechanisms. The limitations of the common in vivo and in vitro experiments to identify the role of mycotoxins in neurotoxicity and thereby in neurodegenerative diseases are elucidated and possible future perspectives to further evolve this research field are presented.
Funding source: MWG Rhineland-Palatinate
Award Identifier / Grant number: NeurodegX Forschungskolleg
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: All authors were funded by the MWG Rhineland-Palatinate (NeurodegX Forschungskolleg).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Al Shoyaib, A., Archie, S.R., and Karamyan, V.T. (2019). Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm. Res. 37: 12, https://doi.org/10.1007/s11095-019-2745-x.Suche in Google Scholar PubMed PubMed Central
Alessenko, A.V. and Albi, E. (2020). Exploring sphingolipid implications in neurodegeneration. Front. Neurol. 11: 59–63, doi:https://doi.org/10.3389/fneur.2020.00437.Suche in Google Scholar PubMed PubMed Central
Alonso, R., Pisa, D., Fernández-Fernández, A.M., and Carrasco, L. (2018). Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10: 159, https://doi.org/10.3389/fnagi.2018.00159.Suche in Google Scholar PubMed PubMed Central
Alonso, R., Pisa, D., Fernandez-Fernandez, A.M., Rabano, A., and Carrasco, L. (2017). Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiol. Dis. 108: 249–260, https://doi.org/10.1016/j.nbd.2017.09.001.Suche in Google Scholar PubMed
Alonso, R., Pisa, D., Marina, A.I., Morato, E., Rabano, A., Rodal, I., and Carrasco, L. (2015a). Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. Int. J. Biol. Sci. 11: 546–558, https://doi.org/10.7150/ijbs.11084.Suche in Google Scholar PubMed PubMed Central
Alonso, R., Pisa, D., Rábano, A., and Carrasco, L. (2014). Alzheimer’s disease and disseminated mycoses. Eur. J. Clin. Microbiol. Infect. Dis. 33: 1125–1132, https://doi.org/10.1007/s10096-013-2045-z.Suche in Google Scholar PubMed
Alonso, R., Pisa, D., Rábano, A., Rodal, I., and Carrasco, L. (2015b). Cerebrospinal fluid from alzheimer’s disease patients contains fungal proteins and DNA. J Alzheimers Dis 47: 873–876, https://doi.org/10.3233/jad-150382.Suche in Google Scholar PubMed
Alsayyah, A., Elmazoudy, R., Al-Namshan, M., Al-Jafary, M., and Alaqeel, N. (2019). Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. Ecotoxicol. Environ. Saf. 182: 109407, https://doi.org/10.1016/j.ecoenv.2019.109407.Suche in Google Scholar PubMed
Alshannaq, A. and Yu, J.H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Publ. Health 14: 6, doi:https://doi.org/10.3390/ijerph14060632.Suche in Google Scholar PubMed PubMed Central
Alston, T.A., Mela, L., and Bright, H.J. (1977). 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. Natl. Acad. Sci. U. S. A. 74: 3767–3771, https://doi.org/10.1073/pnas.74.9.3767.Suche in Google Scholar PubMed PubMed Central
Anfossi, L., Giovannoli, C., and Baggiani, C. (2016). Mycotoxin detection. Curr. Opin. Biotechnol. 37: 120–126, https://doi.org/10.1016/j.copbio.2015.11.005.Suche in Google Scholar PubMed
Ao, Z., Cai, H., Havert, D.J., Wu, Z., Gong, Z., Beggs, J.M., Mackie, K., and Guo, F. (2020). One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal Chem 92: 4630–4638, doi:10.1021/acs.analchem.0c00205.10.1021/acs.analchem.0c00205Suche in Google Scholar PubMed
Ardhanareeswaran, K., Mariani, J., Coppola, G., Abyzov, A., and Vaccarino, F.M. (2017). Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat. Rev. Neurol. 13: 265–278, https://doi.org/10.1038/nrneurol.2017.45.Suche in Google Scholar PubMed PubMed Central
Axelsson, V., Holback, S., Sjogren, M., Gustafsson, H., and Forsby, A. (2006a). Gliotoxin induces caspase-dependent neurite degeneration and calpain-mediated general cytotoxicity in differentiated human neuroblastoma SH-SY5Y cells. Biochem. Biophys. Res. Commun. 345: 1068–1074, https://doi.org/10.1016/j.bbrc.2006.05.019.Suche in Google Scholar PubMed
Axelsson, V., Pikkarainen, K., and Forsby, A. (2006b). Glutathione intensifies gliotoxin-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Cell Biol. Toxicol. 22: 127–136, https://doi.org/10.1007/s10565-006-0048-6.Suche in Google Scholar PubMed
Bahey, N.G., Abd Elaziz, H.O., and Gadalla, K.K. (2015). Toxic effect of aflatoxin B1 and the role of recovery on the rat cerebral cortex and hippocampus. Tissue Cell 47: 559–566, https://doi.org/10.1016/j.tice.2015.09.001.Suche in Google Scholar PubMed
Banczerowski-Pelyhe, I., Vilagi, I., Detri, L., Doczi, J., Kovacs, F., and Kukorelli, T. (2002). In vivo and in vitro electrophysiological monitoring of rat neocortical activity after dietary fumonisin exposure. Mycopathologia 153: 149–156, https://doi.org/10.1023/a:1014584303427.10.1023/A:1014584303427Suche in Google Scholar
Battilani, P., Toscano, P., Van der fels-Klerx, H.J., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A., Goumperis, T., and Robinson, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 6: 24328, https://doi.org/10.1038/srep24328.Suche in Google Scholar PubMed PubMed Central
Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller, J.M., Storey, E., Srivastava, R., Rosen, B.R., and Hyman, B.T. (1993). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13: 4181–4192, https://doi.org/10.1523/jneurosci.13-10-04181.1993.Suche in Google Scholar
Belmadani, A., Tramu, G., Betbeder, A.M., and Creppy, E.E. (1998a). Subchronic effects of ochratoxin A on young adult rat brain and partial prevention by aspartame, a sweetener. Hum. Exp. Toxicol. 17: 380–386, https://doi.org/10.1191/096032798678908981.Suche in Google Scholar
Belmadani, A., Tramu, G., Betbeder, A.M., Steyn, P.S., and Creppy, E.E. (1998b). Regional selectivity to ochratoxin A, distribution and cytotoxicity in rat brain. Arch. Toxicol. 72: 656–662, https://doi.org/10.1007/s002040050557.Suche in Google Scholar
Benjelloun, N., Charriaut-Marlangue, C., Hantaz-Ambroise, D., Ménard, A., Pierig, R., Alliel, P.M., and Rieger, F. (2002). Induction of cell death in rat brain by a gliotoxic factor from cerebrospinal fluid in multiple sclerosis. Cell. Mol. Biol. 48: 205–212.Suche in Google Scholar
Bennett, J.W. and Klich, M. (2003). Mycotoxins. Clin. Microbiol. Rev. 16: 497–516, https://doi.org/10.1128/cmr.16.3.497-516.2003.Suche in Google Scholar
Berntsen, H.F., Bogen, I.L., Wigestrand, M.B., Fonnum, F., Walaas, S.I., and Moldes-Anaya, A. (2017). The fungal neurotoxin penitrem A induces the production of reactive oxygen species in human neutrophils at submicromolar concentrations. Toxicology 392: 64–70, https://doi.org/10.1016/j.tox.2017.10.008.Suche in Google Scholar
Berntsen, H.F., Wigestrand, M.B., Bogen, I.L., Fonnum, F., Walaas, S.I., and Moldes-Anaya, A. (2013). Mechanisms of penitrem-induced cerebellar granule neuron death in vitro: possible involvement of GABAA receptors and oxidative processes. Neurotoxicology 35: 129–136, https://doi.org/10.1016/j.neuro.2013.01.004.Suche in Google Scholar
Bhandari, N., He, Q., and Sharma, R.P. (2001). Gender-related differences in subacute fumonisin B1 hepatotoxicity in BALB/c mice. Toxicology 165: 195–204, https://doi.org/10.1016/s0300-483x(01)00449-8.Suche in Google Scholar
Bhat, P.V., Anand, T., Mohan Manu, T., and Khanum, F. (2018). Restorative effect of L-dopa treatment against Ochratoxin A induced neurotoxicity. Neurochem. Int. 118: 252–263, https://doi.org/10.1016/j.neuint.2018.04.003.Suche in Google Scholar
Bhat, P.V., Pandareesh, M., Khanum, F., and Tamatam, A. (2016). Cytotoxic effects of ochratoxin A in neuro-2a cells: role of oxidative stress evidenced by N-acetylcysteine. Front. Microbiol. 7: 1142, https://doi.org/10.3389/fmicb.2016.01142.Suche in Google Scholar
Bonsi, P., Augusti-Tocco, G., Palmery, M., and Giorgi, M. (1999). Aflatoxin B1 is an inhibitor of cyclic nucleotide phosphodiesterase activity. Gen. Pharmacol. 32: 615–619, https://doi.org/10.1016/s0306-3623(98)00282-1.Suche in Google Scholar
Boyd, K.E., Fitzpatrick, D.W., Wilson, J.R., and Wilson, L.M. (1988). Effect of T-2 toxin on brain biogenic monoamines in rats and chickens. Can. J. Vet. Res. 52: 181–185, https://doi.org/10.1086/269136.Suche in Google Scholar
Bradford, H.F., Norris, P.J., and Smith, C.C. (1990). Changes in transmitter release patterns in vitro induced by tremorgenic mycotoxins. J. Environ. Pathol. Toxicol. Oncol. 10: 17–30, https://doi.org/10.1016/0263-8231(90)90003-h.Suche in Google Scholar
Brand, B., Stoye, N.M., Guilherme, M.D.S., Nguyen, V.T.T., Baumgaertner, J.C., Schuffler, A., Thines, E., and Endres, K. (2019). Identification of patulin from Penicillium coprobium as a toxin for enteric neurons. Molecules 24: 15, doi:https://doi.org/10.3390/molecules24152776.Suche in Google Scholar
Bredesen, D.E. (2016). Inhalational Alzheimer’s disease: an unrecognized - and treatable - epidemic. Aging 8: 304–313, https://doi.org/10.18632/aging.100896.Suche in Google Scholar
Brouillet, E., Hantraye, P., Dolan, R., Leroy-Willig, A., Bottlaender, M., Isacson, O., Maziere, M., Ferrante, R., and Beal, M. (1993a). Chronic administration of 3-nitropropionic acid induced selective striatal degeneration and abnormal choreiform movements in monkeys. Soc. Neurosci. Abstr.: 409.Suche in Google Scholar
Brouillet, E., Jenkins, B.G., Hyman, B.T., Ferrante, R.J., Kowall, N.W., Srivastava, R., Roy, D.S., Rosen, B.R., and Beal, M.F. (1993b). Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60: 356–359, https://doi.org/10.1111/j.1471-4159.1993.tb05859.x.Suche in Google Scholar
Brouillet, E., Hantraye, P., Ferrante, R.J., Dolan, R., Leroy-Willig, A., Kowall, N.W., and Beal, M.F. (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. U. S. A. 92: 7105–7109, https://doi.org/10.1073/pnas.92.15.7105.Suche in Google Scholar
Bullerman, L.B. (1979). Significance of mycotoxins to food safety and human health. J. Food Protect. 42: 65–86, https://doi.org/10.4315/0362-028x-42.1.65.Suche in Google Scholar
Bunge, I., Dirheimer, G., and Roschenthaler, R. (1978). In vivo and in vitro inhibition of protein synthesis in Bacillus stearothermophilus by ochratoxin A. Biochem. Biophys. Res. Commun. 83: 398–405, https://doi.org/10.1016/0006-291x(78)91004-5.Suche in Google Scholar
Castanedo-Vazquez, D., Bosque-Varela, P., Sainz-Pelayo, A., and Riancho, J. (2019). Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. J. Neurol. 266: 27–36, https://doi.org/10.1007/s00415-018-8919-3.Suche in Google Scholar
Chaudhary, M. and Rao, P.V. (2010). Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice. Food Chem. Toxicol. 48: 3436–3442, https://doi.org/10.1016/j.fct.2010.09.018.Suche in Google Scholar
Coulombe, R.A.Jr. and Sharma, R.P. (1985). Effect of repeated dietary exposure of aflatoxin B1 on brain biogenic amines and metabolites in the rat. Toxicol. Appl. Pharmacol. 80: 496–501, https://doi.org/10.1016/0041-008x(85)90394-1.Suche in Google Scholar
Creppy, E.E., Chakor, K., Fisher, M.J., and Dirheimer, G. (1990). The myocotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes and in vivo. Arch. Toxicol. 64: 279–284, https://doi.org/10.1007/bf01972987.Suche in Google Scholar PubMed
Creppy, E.E., Kern, D., Steyn, P.S., Vleggaar, R., Roschenthaler, R., and Dirheimer, G. (1983). Comparative study of the effect of ochratoxin A analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol. Lett. 19: 217–224, https://doi.org/10.1016/0378-4274(83)90122-4.Suche in Google Scholar
da Silva, A.S., Santurio, J.M., Roza, L.F., Bottari, N.B., Galli, G.M., Morsch, V.M., Schetinger, M.R.C., Baldissera, M.D., Stefani, L.M., Radavelli, W.M., et al.. (2017). Aflatoxins produced by Aspergillus parasiticus present in the diet of quails increase the activities of cholinesterase and adenosine deaminase. Microb. Pathog. 107: 309–312, https://doi.org/10.1016/j.micpath.2017.03.041.Suche in Google Scholar
Dalziel, J.E., Finch, S.C., and Dunlop, J. (2005). The fungal neurotoxin lolitrem B inhibits the function of human large conductance calcium-activated potassium channels. Toxicol. Lett. 155: 421–426, https://doi.org/10.1016/j.toxlet.2004.11.011.Suche in Google Scholar
Daviaud, N., Garbayo, E., Lautram, N., Franconi, F., Lemaire, L., Perez-Pinzon, M., and Montero-Menei, C.N. (2014). Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson’s disease. Neuroscience 256: 10–22, https://doi.org/10.1016/j.neuroscience.2013.10.021.Suche in Google Scholar
de Melo, F.T., De Oliveira, I.M., Greggio, S., Dacosta, J.C., Guecheva, T.N., Saffi, J., Henriques, J.A., and Rosa, R.M. (2012). DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food Chem. Toxicol. 50: 3548–3555, https://doi.org/10.1016/j.fct.2011.12.022.Suche in Google Scholar
Delibas, N., Altuntas, I., Yonden, Z., and Ozcelik, N. (2003). Ochratoxin A reduces NMDA receptor subunits 2A and 2B concentrations in rat hippocampus: partial protective effect of melatonin. Hum. Exp. Toxicol. 22: 335–339, https://doi.org/10.1191/0960327103ht357oa.Suche in Google Scholar
Desai, K., Sullards, M.C., Allegood, J., Wang, E., Schmelz, E.M., Hartl, M., Humpf, H.U., Liotta, D.C., Peng, Q., and Merrill, A.H.Jr. (2002). Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim. Biophys. Acta 1585: 188–192, https://doi.org/10.1016/s1388-1981(02)00340-2.Suche in Google Scholar
Doi, K. and Uetsuka, K. (2011). Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int. J. Mol. Sci. 12: 5213–5237, https://doi.org/10.3390/ijms12085213.Suche in Google Scholar PubMed PubMed Central
Domijan, A.M. (2012). Fumonisin B(1): a neurotoxic mycotoxin. Arh. Hig. Rada. Toksikol. 63: 531–544, https://doi.org/10.2478/10004-1254-63-2012-2239.Suche in Google Scholar PubMed
Domijan, A.M. and Abramov, A.Y. (2011). Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis--implication to mechanism of cell toxicity. Int. J. Biochem. Cell Biol. 43: 897–904, https://doi.org/10.1016/j.biocel.2011.03.003.Suche in Google Scholar PubMed
Domijan, A.M., Kovac, S., and Abramov, A.Y. (2012). Impact of fumonisin B1 on glutamate toxicity and low magnesium-induced seizure activity in neuronal primary culture. Neuroscience 202: 10–16, https://doi.org/10.1016/j.neuroscience.2011.12.005.Suche in Google Scholar
Egbunike, G.N. and Ikegwuonu, F.I. (1984). Effect of aflatoxicosis on acetylcholinesterase activity in the brain and adenohypophysis of the male rat. Neurosci. Lett. 52: 171–174, https://doi.org/10.1016/0304-3940(84)90369-0.Suche in Google Scholar
Eiser, A.R. (2017). Why does Finland have the highest dementia mortality rate? Environmental factors may be generalizable. Brain Res. 1671: 14–17, https://doi.org/10.1016/j.brainres.2017.06.032.Suche in Google Scholar PubMed
Escher, B.I., Hackermüller, J., Polte, T., Scholz, S., Aigner, A., Altenburger, R., Böhme, A., Bopp, S.K., Brack, W., and Busch, W., et al.. (2016). From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ. Int 99: 97–106, doi:10.1016/j.envint.2016.11.029.10.1016/j.envint.2016.11.029Suche in Google Scholar PubMed PubMed Central
Eskola, M., Elliott, C.T., Hajslova, J., Steiner, D., and Krska, R. (2020a). Towards a dietary-exposome assessment of chemicals in food: an update on the chronic health risks for the European consumer. Crit. Rev. Food Sci. Nutr. 60: 1890–1911, https://doi.org/10.1080/10408398.2019.1612320.Suche in Google Scholar PubMed
Eskola, M., Kos, G., Elliott, C.T., Hajslova, J., Mayar, S., and Krska, R. (2020b). Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ’FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 60: 2773–2789, https://doi.org/10.1080/10408398.2019.1658570.Suche in Google Scholar PubMed
Ferrante, R.J. (1993). Striatal pathology of impaired mitochondrial metabolism in primnates profiles Huntington’s disease. Soc. Neurosci. Abstr. 19: 408.Suche in Google Scholar
Ferrante, R.J. (2009). Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochim. Biophys. Acta 1792: 506–520, https://doi.org/10.1016/j.bbadis.2009.04.001.Suche in Google Scholar PubMed PubMed Central
Foran, E. and Trotti, D. (2009). Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxidants Redox Signal. 11: 1587–1602, https://doi.org/10.1089/ars.2009.2444.Suche in Google Scholar PubMed PubMed Central
Freese, C., Reinhardt, S., Hefner, G., Unger, R.E., Kirkpatrick, C.J., and Endres, K. (2014). A novel blood-brain barrier co-culture system for drug targeting of Alzheimer’s disease: establishment by using acitretin as a model drug. PloS One 9: e91003, https://doi.org/10.1371/journal.pone.0091003.Suche in Google Scholar PubMed PubMed Central
French, P.W., Ludowyke, R.I., and Guillemin, G.J. (2019). Fungal-contaminated grass and well water and sporadic amyotrophic lateral sclerosis. Neural Regen. Res. 14: 1490–1493, https://doi.org/10.4103/1673-5374.255959.Suche in Google Scholar PubMed PubMed Central
Gabrielson, K.L., Hogue, B.A., Bohr, V.A., Cardounel, A.J., Nakajima, W., Kofler, J., Zweier, J.L., Rodriguez, E.R., Martin, L.J., De Souza-Pinto, N.C., et al.. (2001). Mitochondrial toxin 3-nitropropionic acid induces cardiac and neurotoxicity differentially in mice. Am. J. Pathol. 159: 1507–1520, https://doi.org/10.1016/s0002-9440(10)62536-9.Suche in Google Scholar
Gajęcka, M., Stopa, E., Tarasiuk, M., Zielonka, L., and Gajęcki, M. (2013). The expression of type-1 and type-2 nitric oxide synthase in selected tissues of the gastrointestinal tract during mixed mycotoxicosis. Toxins 5: 2281–2292, https://doi.org/10.3390/toxins5112281.Suche in Google Scholar PubMed PubMed Central
Galvano, F., Campisi, A., Russo, A., Galvano, G., Palumbo, M., Renis, M., Barcellona, M.L., Perez-Polo, J.R., and Vanella, A. (2002). DNA damage in astrocytes exposed to fumonisin B1. Neurochem. Res. 27: 345–351, https://doi.org/10.1023/a:1014971515377.10.1023/A:1014971515377Suche in Google Scholar
Gelineau-Van Waes, J., Starr, L., Maddox, J., Aleman, F., Voss, K.A., Wilberding, J., and Riley, R.T. (2005). Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res. A Clin. Mol. Teratol. 73: 487–497, https://doi.org/10.1002/bdra.20148.Suche in Google Scholar PubMed
Gerding, J., Ali, N., Schwartzbord, J., Cramer, B., Brown, D.L., Degen, G.H., and Humpf, H.U. (2015). A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach. Mycotoxin Res. 31: 127–136, https://doi.org/10.1007/s12550-015-0223-9.Suche in Google Scholar PubMed
Giussani, P., Prinetti, A., and Tringali, C. (2021). The role of Sphingolipids in myelination and myelin stability and their involvement in childhood and adult demyelinating disorders. J. Neurochem. 156: 403–414, https://doi.org/10.1111/jnc.15133.Suche in Google Scholar PubMed
Goers, L., Freemont, P., and Polizzi, K.M. (2014). Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11: 96, doi:https://doi.org/10.1098/rsif.2014.0065.Suche in Google Scholar PubMed PubMed Central
Graham, M.L. and Prescott, M.J. (2015). The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur. J. Pharmacol. 759: 19–29, https://doi.org/10.1016/j.ejphar.2015.03.040.Suche in Google Scholar PubMed PubMed Central
Guo, P., Liu, A., Huang, D., Wu, Q., Fatima, Z., Tao, Y., Cheng, G., Wang, X., and Yuan, Z. (2018). Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicol. Lett. 286: 96–107, https://doi.org/10.1016/j.toxlet.2018.01.012.Suche in Google Scholar PubMed
Haley, R.W. (2003a). Excess incidence of ALS in young Gulf War veterans. Neurology 61: 750, https://doi.org/10.1212/wnl.61.6.750.Suche in Google Scholar PubMed
Haley, R.W. (2003b). Gulf war syndrome: narrowing the possibilities. Lancet Neurol. 2: 272–273, https://doi.org/10.1016/s1474-4422(03)00376-4.Suche in Google Scholar
Han, N., Luo, R., Liu, J., Guo, T., Feng, J., and Peng, X. (2020). Transcriptomic and proteomic analysis reveals mechanisms of patulin-induced cell toxicity in human embryonic kidney cells. Toxins 12: 11, doi:https://doi.org/10.3390/toxins12110681.Suche in Google Scholar
Hanley, A.B., Mcbride, J., Oehlschlager, S., and Opara, E. (1999). Use of a flow cell bioreactor as a chronic toxicity model system. Toxicol. Vitro 13: 847–851, https://doi.org/10.1016/s0887-2333(99)00053-3.Suche in Google Scholar
Harel, R. and Futerman, A.H. (1993). Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J. Biol. Chem. 268: 14476–14481, https://doi.org/10.1016/s0021-9258(19)85263-8.Suche in Google Scholar
Heidtmann-Bemvenuti, R., Mendes, G.L., Scaglioni, P.T., Badiale-Furlong, E., and Souza-Soares, L.A. (2011). Biochemistry and metabolism of mycotoxins: a review. Afr. J. Food Sci. 5: 861–869, doi:https://doi.org/10.5897/ajfsx11.009.Suche in Google Scholar
Helms, H.C., Abbott, N.J., Burek, M., Cecchelli, R., Couraud, P.O., Deli, M.A., Forster, C., Galla, H.J., Romero, I.A., Shusta, E.V., et al.. (2016). In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cerebr. Blood Flow Metabol. 36: 862–890, https://doi.org/10.1177/0271678x16630991.Suche in Google Scholar
Hirsch, C. and Schildknecht, S. (2019). In vitro research reproducibility: keeping up high standards. Front. Pharmacol. 10: 1484, https://doi.org/10.3389/fphar.2019.01484.Suche in Google Scholar
Hotujac, L., Muftic, R.H., and Filipovic, N. (1976). Verruculogen: a new substance for decreasing of GABA levels in CNS. Pharmacology 14: 297–300, https://doi.org/10.1159/000136608.Suche in Google Scholar
IARC (2012). Monographs on the evaluation of carcinogenic risks to humans: chemical agents and related occupations. A review of human carcinogens. International Agency for Research on Cancer, Lyon.Suche in Google Scholar
Ikegwuonu, F.I. (1983). The neurotoxicity of aflatoxin B1 in the rat. Toxicology 28: 247–259, https://doi.org/10.1016/0300-483x(83)90121-x.Suche in Google Scholar
Ismaiel, A.A. and Papenbrock, J. (2015). Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture 5: 492–537, https://doi.org/10.3390/agriculture5030492.Suche in Google Scholar
Israel, M.A., Yuan, S.H., Bardy, C., Reyna, S.M., Mu, Y., Herrera, C., Hefferan, M.P., Van Gorp, S., Nazor, K.L., Boscolo, F.S., et al.. (2012). Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482: 216–220, https://doi.org/10.1038/nature10821.Suche in Google Scholar
Janik, E., Niemcewicz, M., Ceremuga, M., Stela, M., Saluk-Bijak, J., Siadkowski, A., and Bijak, M. (2020). Molecular aspects of mycotoxins - a serious problem for human health. Int. J. Mol. Sci. 21: 21, https://doi.org/10.3390/ijms21218187.Suche in Google Scholar
Jayasekara, S., Drown, D.B., Coulombe, R.A.Jr., and Sharma, R.P. (1989). Alteration of biogenic amines in mouse brain regions by alkylating agents. I. Effects of aflatoxin B1 on brain monoamines concentrations and activities of metabolizing enzymes. Arch. Environ. Contam. Toxicol. 18: 396–403, https://doi.org/10.1007/bf01062364.Suche in Google Scholar
Jo, J., Xiao, Y., Sun, A.X., Cukuroglu, E., Tran, H.D., Goke, J., Tan, Z.Y., Saw, T.Y., Tan, C.P., Lokman, H., et al.. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19: 248–257, https://doi.org/10.1016/j.stem.2016.07.005.Suche in Google Scholar
Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., and Sasai, Y. (2013). Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. U. S. A. 110: 20284–20289, https://doi.org/10.1073/pnas.1315710110.Suche in Google Scholar
Kellerman, T.S., Marasas, W.F., Thiel, P.G., Gelderblom, W.C., Cawood, M., and Coetzer, J.A. (1990). Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1. Onderstepoort J. Vet. Res. 57: 269–275.Suche in Google Scholar
Kimbrough, T.D., Llewellyn, G.C., and Weekley, L.B. (1992). The effect of aflatoxin B1 exposure on serotonin metabolism: response to a tryptophan load. Metab. Brain Dis. 7: 175–182, https://doi.org/10.1007/bf01000244.Suche in Google Scholar
Kodsi, M.H. and Swerdlow, N.R. (1997). Mitochondrial toxin 3-nitropropionic acid produces startle reflex abnormalities and striatal damage in rats that model some features of Huntington’s disease. Neurosci. Lett. 231: 103–107, https://doi.org/10.1016/s0304-3940(97)00482-5.Suche in Google Scholar
Kovacic, S., Pepeljnjak, S., Petrinec, Z., and Klaric, M.S. (2009). Fumonisin B1 neurotoxicity in young carp (Cyprinus carpio L.). Arh. Hig. Rada. Toksikol. 60: 419–426.10.2478/10004-1254-60-2009-1974Suche in Google Scholar PubMed
Kovalevich, J. and Langford, D. (2013). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 1078: 9–21, https://doi.org/10.1007/978-1-62703-640-5_2.Suche in Google Scholar PubMed PubMed Central
Koziolek, M., Alcaro, S., Augustijns, P., Basit, A.W., Grimm, M., Hens, B., Hoad, C.L., Jedamzik, P., Madla, C.M., Maliepaard, M., et al.. (2019). The mechanisms of pharmacokinetic food-drug interactions – a perspective from the UNGAP group. Eur. J. Pharmaceut. Sci. 134: 31–59, https://doi.org/10.1016/j.ejps.2019.04.003.Suche in Google Scholar PubMed
Kunkanjanawan, T., Noisa, P., and Parnpai, R. (2011). Modeling neurological disorders by human induced pluripotent stem cells. J. Biomed. Biotechnol. 2011: 350131, https://doi.org/10.1155/2011/350131.Suche in Google Scholar
Kwon, O.S., Sandberg, J.A., and Slikker, W.Jr. (1997a). Effects of fumonisin B1 treatment on blood-brain barrier transfer in developing rats. Neurotoxicol. Teratol. 19: 151–155, https://doi.org/10.1016/s0892-0362(96)00217-6.Suche in Google Scholar
Kwon, O.S., Schmued, L.C., and Slikker, W.Jr. (1997b). Fumonisin B1 in developing rats alters brain sphinganine levels and myelination. Neurotoxicology 18: 571–579.Suche in Google Scholar
Kwon, O.S., Slikker, W.Jr., and Davies, D.L. (2000). Biochemical and morphological effects of fumonisin B(1) on primary cultures of rat cerebrum. Neurotoxicol. Teratol. 22: 565–572, https://doi.org/10.1016/s0892-0362(00)00082-9.Suche in Google Scholar
Liew, W.-P.-P. and Mohd-Redzwan, S. (2018). Mycotoxin: its impact on gut health and microbiota. Front. Cell. Infect. Microbiol. 8: 60, https://doi.org/10.3389/fcimb.2018.00060.Suche in Google Scholar PubMed PubMed Central
Lorenz, N., Danicke, S., Edler, L., Gottschalk, C., Lassek, E., Marko, D., Rychlik, M., and Mally, A. (2019). A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res. 35: 27–46, https://doi.org/10.1007/s12550-018-0328-z.Suche in Google Scholar PubMed PubMed Central
Lu, H.X., Levis, H., Melhem, N., and Parker, T. (2008). Toxin-produced Purkinje cell death: a model for neural stem cell transplantation studies. Brain Res. 1207: 207–213, https://doi.org/10.1016/j.brainres.2008.02.034.Suche in Google Scholar PubMed
Ludolph, A., Seelig, M., Ludolph, A., Novitt, P., Allen, C., Spencer, P., and Sabri, M. (1992). 3-Nitropropionic acid decreases cellular energy levels and causes neuronal degeneration in cortical explants. Neurodegeneration 1: 21–28.Suche in Google Scholar
Malekinejad, H., Aghazadeh-Attari, J., Rezabakhsh, A., Sattari, M., and Ghasemsoltani-Momtaz, B. (2015). Neurotoxicity of mycotoxins produced in vitro by Penicillium roqueforti isolated from maize and grass silage. Hum. Exp. Toxicol. 34: 997–1005, https://doi.org/10.1177/0960327114565493.Suche in Google Scholar PubMed
Mao, Z., Choo, Y.S., and Lesort, M. (2006). Cystamine and cysteamine prevent 3-NP-induced mitochondrial depolarization of Huntington’s disease knock-in striatal cells. Eur. J. Neurosci. 23: 1701–1710, https://doi.org/10.1111/j.1460-9568.2006.04686.x.Suche in Google Scholar PubMed
Marasas, W.F., Kellerman, T.S., Gelderblom, W.C., Coetzer, J.A., Thiel, P.G., and Van Der Lugt, J.J. (1988). Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort J. Vet. Res. 55: 197–203.Suche in Google Scholar
Marquardt, R.R. and Frohlich, A.A. (1992). A review of recent advances in understanding ochratoxicosis. J. Anim. Sci. 70: 3968–3988, https://doi.org/10.2527/1992.70123968x.Suche in Google Scholar PubMed
Martins, C., Vidal, A., De Boevre, M., De Saeger, S., Nunes, C., Torres, D., Goios, A., Lopes, C., Assunção, R., and Alvito, P. (2019). Exposure assessment of Portuguese population to multiple mycotoxins: the human biomonitoring approach. Int. J. Hyg Environ. Health 222: 913–925, https://doi.org/10.1016/j.ijheh.2019.06.010.Suche in Google Scholar PubMed
Matossian, M.K. (1991). Poisons of the past. J. Interdiscipl. Hist. 22: 170–175.Suche in Google Scholar
McGeer, P.L. and McGeer, E.G. (2008). Glial reactions in Parkinson’s disease. Mov. Disord. 23: 474–483, https://doi.org/10.1002/mds.21751.Suche in Google Scholar
McMillan, A., Renaud, J.B., Burgess, K.M.N., Orimadegun, A.E., Akinyinka, O.O., Allen, S.J., Miller, J.D., Reid, G., and Sumarah, M.W. (2018). Aflatoxin exposure in Nigerian children with severe acute malnutrition. Food Chem. Toxicol. 111: 356–362, https://doi.org/10.1016/j.fct.2017.11.030.Suche in Google Scholar
Mehrzad, J., Hosseinkhani, S., and Malvandi, A.M. (2018). Human microglial cells undergo proapoptotic induction and inflammatory activation upon in vitro exposure to a naturally occurring level of aflatoxin B1. Neuroimmunomodulation 25: 176–183, https://doi.org/10.1159/000493528.Suche in Google Scholar
Mehrzad, J., Malvandi, A.M., Alipour, M., and Hosseinkhani, S. (2017). Environmentally relevant level of aflatoxin B1 elicits toxic pro-inflammatory response in murine CNS-derived cells. Toxicol. Lett. 279: 96–106, https://doi.org/10.1016/j.toxlet.2017.07.902.Suche in Google Scholar
Ménard, A., Amouri, R., Dobránsky, T., Charriaut-Marlangue, C., Pierig, R., Cifuentes-Diaz, C., Ghandour, S., Belliveau, J., Gascan, H., Hentati, F., et al.. (1998). A gliotoxic factor and multiple sclerosis. J. Neurol. Sci. 154: 209–221, https://doi.org/10.1016/s0022-510x(97)00231-1.Suche in Google Scholar
Merrill, A.H.Jr., Wang, E., Vales, T.R., Smith, E.R., Schroeder, J.J., Menaldino, D.S., Alexander, C., Crane, H.M., Xia, J., Liotta, D.C., et al.. (1996). Fumonisin toxicity and sphingolipid biosynthesis. Adv. Exp. Med. Biol. 392: 297–306, https://doi.org/10.1007/978-1-4899-1379-1_25.Suche in Google Scholar
Mobio, T.A., Anane, R., Baudrimont, I., Carratu, M.R., Shier, T.W., Dano, S.D., Ueno, Y., and Creppy, E.E. (2000a). Epigenetic properties of fumonisin B(1): cell cycle arrest and DNA base modification in C6 glioma cells. Toxicol. Appl. Pharmacol. 164: 91–96, https://doi.org/10.1006/taap.2000.8893.Suche in Google Scholar
Mobio, T.A., Baudrimont, I., Sanni, A., Shier, T.W., Saboureau, D., Dano, S.D., Ueno, Y., Steyn, P.S., and Creppy, E.E. (2000b). Prevention by vitamin E of DNA fragmentation and apoptosis induced by fumonisin B1 in C6 glioma cells. Arch. Toxicol. 74: 112–119, https://doi.org/10.1007/s002040050661.Suche in Google Scholar
Mobio, T.A., Tavan, E., Baudrimont, I., Anane, R., Carratu, M.R., Sanni, A., Gbeassor, M.F., Shier, T.W., Narbonne, J.F., and Creppy, E.E. (2003). Comparative study of the toxic effects of fumonisin B1 in rat C6 glioma cells and p53-null mouse embryo fibroblasts. Toxicology 183: 65–75, https://doi.org/10.1016/s0300-483x(02)00441-9.Suche in Google Scholar
Moldes-Anaya, A.S., Fonnum, F., Eriksen, G.S., Rundberget, T., Walaas, S.I., and Wigestrand, M.B. (2011). In vitro neuropharmacological evaluation of penitrem-induced tremorgenic syndromes: importance of the GABAergic system. Neurochem. Int. 59: 1074–1081, https://doi.org/10.1016/j.neuint.2011.08.014.Suche in Google Scholar PubMed
Monnet-Tschudi, F., Zurich, M.G., Sorg, O., Matthieu, J.M., Honegger, P., and Schilter, B. (1999). The naturally occurring food mycotoxin fumonisin B1 impairs myelin formation in aggregating brain cell culture. Neurotoxicology 20: 41–48.Suche in Google Scholar
Monzel, A.S., Smits, L.M., Hemmer, K., Hachi, S., Moreno, E.L., Van Wuellen, T., Jarazo, J., Walter, J., Bruggemann, I., Boussaad, I., et al.. (2017). Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 8: 1144–1154, https://doi.org/10.1016/j.stemcr.2017.03.010.Suche in Google Scholar
Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., and Sasai, Y. (2015). Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10: 537–550, https://doi.org/10.1016/j.celrep.2014.12.051.Suche in Google Scholar
Mullbacher, A., Waring, P., Tiwari-Palni, U., and Eichner, R.D. (1986). Structural relationship of epipolythiodioxopiperazines and their immunomodulating activity. Mol. Immunol. 23: 231–235, https://doi.org/10.1016/0161-5890(86)90047-7.Suche in Google Scholar
Myburg, R.B., Needhi, N., and Chuturgoon, A.A. (2009). The ultrastructural effects and immunolocalisation of fumonisin B1 on cultured oesophageal cancer cells (SNO). South Afr. J. Sci. 105: 217–222.10.4102/sajs.v105i5/6.94Suche in Google Scholar
Newberne, P.M. and Butler, W.H. (1969). Acute and chronic effects of aflatoxin on the liver of domestic and laboratory animals: a review. Canc. Res. 29: 236–250.Suche in Google Scholar
Niaz, K., Shah, S.Z.A., Khan, F., and Bule, M. (2020). Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. Environ. Sci. Pollut. Res. Int. 27: 44673–44700, https://doi.org/10.1007/s11356-020-08991-y.Suche in Google Scholar PubMed
Norris, P.J., Smith, C.C., De Belleroche, J., Bradford, H.F., Mantle, P.G., Thomas, A.J., and Penny, R.H. (1980). Actions of tremorgenic fungal toxins on neurotransmitter release. J. Neurochem. 34: 33–42, https://doi.org/10.1111/j.1471-4159.1980.tb04618.x.Suche in Google Scholar PubMed
Oncu Kaya, E.M., Korkmaz, O.T., Yeniceli Ugur, D., Sener, E., Tuncel, A.N., and Tuncel, M. (2019). Determination of Ochratoxin-A in the brain microdialysates and plasma of awake, freely moving rats using ultra high performance liquid chromatography fluorescence detection method. J. Chromatogr. B Ana. Technol. Biomed. Life Sci. 1125: 121700, https://doi.org/10.1016/j.jchromb.2019.06.027.Suche in Google Scholar PubMed
Oskarsson, B., Horton, D.K., and Mitsumoto, H. (2015). Potential environmental factors in amyotrophic lateral sclerosis. Neurol. Clin. 33: 877–888, https://doi.org/10.1016/j.ncl.2015.07.009.Suche in Google Scholar PubMed PubMed Central
Osuchowski, M.F., Edwards, G.L., and Sharma, R.P. (2005). Fumonisin B1-induced neurodegeneration in mice after intracerebroventricular infusion is concurrent with disruption of sphingolipid metabolism and activation of proinflammatory signaling. Neurotoxicology 26: 211–221, https://doi.org/10.1016/j.neuro.2004.10.001.Suche in Google Scholar PubMed
Osuchowski, M.F. and Sharma, R.P. (2005). Fumonisin B1 induces necrotic cell death in BV-2 cells and murine cultured astrocytes and is antiproliferative in BV-2 cells while N2A cells and primary cortical neurons are resistant. Neurotoxicology 26: 981–992, https://doi.org/10.1016/j.neuro.2005.05.001.Suche in Google Scholar PubMed
Oyelami, O.A., Maxwell, S.M., Adelusola, K.A., Aladekoma, T.A., and Oyelese, A.O. (1995). Aflatoxins in the autopsy brain tissue of children in Nigeria. Mycopathologia 132: 35–38, https://doi.org/10.1007/bf01138602.Suche in Google Scholar
Ozone, C., Suga, H., Eiraku, M., Kadoshima, T., Yonemura, S., Takata, N., Oiso, Y., Tsuji, T., and Sasai, Y. (2016). Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat. Commun. 7: 10351, https://doi.org/10.1038/ncomms10351.Suche in Google Scholar
Pal, S., Singh, N., and Ansari, K.M. (2017). Toxicological effects of patulin mycotoxin on the mammalian system: an overview. Toxicol. Res. 6: 764–771, https://doi.org/10.1039/c7tx00138j.Suche in Google Scholar
Palfi, S., Ferrante, R.J., Brouillet, E., Beal, M.F., Dolan, R., Guyot, M.C., Peschanski, M., and Hantraye, P. (1996). Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J. Neurosci. 16: 3019–3025, https://doi.org/10.1523/jneurosci.16-09-03019.1996.Suche in Google Scholar
Paradells, S., Rocamonde, B., Llinares, C., Herranz-Perez, V., Jimenez, M., Garcia-Verdugo, J.M., Zipancic, I., Soria, J.M., and Garcia-Esparza, M.A. (2015). Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain. J. Appl. Toxicol. 35: 737–751, https://doi.org/10.1002/jat.3061.Suche in Google Scholar
Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141–146, https://doi.org/10.1038/nature06534.Suche in Google Scholar
Park, S., Lee, J.Y., You, S., Song, G., and Lim, W. (2020). Neurotoxic effects of aflatoxin B1 on human astrocytes in vitro and on glial cell development in zebrafish in vivo. J. Hazard Mater. 386: 121639, https://doi.org/10.1016/j.jhazmat.2019.121639.Suche in Google Scholar
Park, S., Lim, W., You, S., and Song, G. (2019). Ochratoxin A exerts neurotoxicity in human astrocytes through mitochondria-dependent apoptosis and intracellular calcium overload. Toxicol. Lett. 313: 42–49, https://doi.org/10.1016/j.toxlet.2019.05.021.Suche in Google Scholar
Penney, J., Ralvenius, W.T., and Tsai, L.H. (2020). Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol. Psychiatr. 25: 148–167, https://doi.org/10.1038/s41380-019-0468-3.Suche in Google Scholar
Pestka, J.J., Clark, E.S., Schwartz-Zimmermann, H.E., and Berthiller, F. (2017). Sex is a determinant for deoxynivalenol metabolism and elimination in the mouse. Toxins 9, https://doi.org/10.3390/toxins9080240.Suche in Google Scholar
Peterson, D.W., Bradfor, H.F., and Mantle, P.G. (1982). Actions of a tremorgenic mycotoxin on amino acid transmitter release in vivo. Biochem. Pharmacol. 31: 2807–2810, https://doi.org/10.1016/0006-2952(82)90137-x.Suche in Google Scholar
Pierig, R., Belliveau, J., Amouri, R., Ménard, A., and Rieger, F. (2002). Association of a gliotoxic activity with active multiple sclerosis in US patients. Cell. Mol. Biol. 48: 199–203.Suche in Google Scholar
Pisa, D., Alonso, R., Rábano, A., Rodal, I., and Carrasco, L. (2015). Different brain regions are infected with fungi in alzheimer’s disease. Sci. Rep. 5: 15015, https://doi.org/10.1038/srep15015.Suche in Google Scholar PubMed PubMed Central
Porter, J.K., Voss, K.A., Bacon, C.W., and Norred, W.P. (1990). Effects of Fusarium moniliforme and corn associated with equine leukoencephalomalacia on rat neurotransmitters and metabolites. Proc. Soc. Exp. Biol. Med. 194: 265–269, https://doi.org/10.3181/00379727-194-43089.Suche in Google Scholar PubMed
Porter, J.K., Voss, K.A., Chamberlain, W.J., Bacon, C.W., and Norred, W.P. (1993). Neurotransmitters in rats fed fumonisin B1. Proc. Soc. Exp. Biol. Med. 202: 360–364, https://doi.org/10.3181/00379727-202-43547.Suche in Google Scholar PubMed
Prelusky, D.B., Trenholm, H.L., and Savard, M.E. (1994). Pharmacokinetic fate of 14C-labelled fumonisin B1 in swine. Nat. Toxins 2: 73–80, https://doi.org/10.1002/nt.2620020205.Suche in Google Scholar PubMed
Purzycki, C.B. and Shain, D.H. (2010). Fungal toxins and multiple sclerosis: a compelling connection. Brain Res. Bull. 82: 4–6, https://doi.org/10.1016/j.brainresbull.2010.02.012.Suche in Google Scholar PubMed
Qian, X., Nguyen, H.N., Song, M.M., Hadiono, C., Ogden, S.C., Hammack, C., Yao, B., Hamersky, G.R., Jacob, F., Zhong, C., et al.. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165: 1238–1254, https://doi.org/10.1016/j.cell.2016.04.032.Suche in Google Scholar PubMed PubMed Central
Qureshi, H., Hamid, S.S., Ali, S.S., Anwar, J., Siddiqui, A.A., and Khan, N.A. (2015). Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier. Med. Mycol. 53: 409–416, https://doi.org/10.1093/mmy/myv010.Suche in Google Scholar PubMed
Reddy, P., Guthridge, K., Vassiliadis, S., Hemsworth, J., Hettiarachchige, I., Spangenberg, G., and Rochfort, S. (2019). Tremorgenic mycotoxins: structure diversity and biological activity. Toxins 11, https://doi.org/10.3390/toxins11050302.Suche in Google Scholar PubMed PubMed Central
Reinhardt, P., Glatza, M., Hemmer, K., Tsytsyura, Y., Thiel, C.S., Hoing, S., Moritz, S., Parga, J.A., Wagner, L., Bruder, J.M., et al.. (2013). Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PloS One 8: e59252, https://doi.org/10.1371/journal.pone.0059252.Suche in Google Scholar PubMed PubMed Central
Richard, S.A., Manaphraim, N.Y.B., and Kortei, N.K. (2020). The novel neurotoxic and neuroimmunotoxic capabilities of aflatoxin B1 on the nervous system: a review. Adv. Biosci. Clin. Med. 8: 1–8.10.7575/aiac.abcmed.v.8n.3p.1Suche in Google Scholar
Rieger, F., Amouri, R., Benjelloun, N., Cifuentes-Diaz, C., LYON-Caen, O., Hantaz-Ambroise, D., Dobransky, T., Perron, H., and Gemy, C. (1996). Gliotoxic factor and multiple sclerosis. Comptes Rendus Acad. Sci. III 319: 343–350.Suche in Google Scholar
Rodríguez-Carrasco, Y., Moltó, J.C., Mañes, J., and Berrada, H. (2014). Exposure assessment approach through mycotoxin/creatinine ratio evaluation in urine by GC-MS/MS. Food Chem. Toxicol. 72: 69–75, https://doi.org/10.1016/j.fct.2014.07.014.Suche in Google Scholar PubMed
Roque, P.J. and Costa, L.G. (2017). Co-culture of neurons and microglia. Curr. Protoc. Toxicol. 74: 11.24.1–11.24.17, doi:https://doi.org/10.1002/cptx.32.Suche in Google Scholar PubMed PubMed Central
Rosenstein, R.E., Chuluyan, H.E., and Cardinali, D.P. (1990). Presynaptic effects of gamma-aminobutyric acid on norepinephrine release and uptake in rat pineal gland. J. Neural Transm. Gen. Sect. 82: 131–140, https://doi.org/10.1007/bf01245169.Suche in Google Scholar
Ross, P.F., Ledet, A.E., Owens, D.L., Rice, L.G., Nelson, H.A., Osweiler, G.D., and Wilson, T.M. (1993). Experimental equine leukoencephalomalacia, toxic hepatosis, and encephalopathy caused by corn naturally contaminated with fumonisins. J. Vet. Diagn. Invest. 5: 69–74, https://doi.org/10.1177/104063879300500115.Suche in Google Scholar PubMed
Roy, J., Minotti, S., Dong, L., Figlewicz, D.A., and Durham, H.D. (1998). Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J. Neurosci. 18: 9673–9684, https://doi.org/10.1523/jneurosci.18-23-09673.1998.Suche in Google Scholar
Rumora, L. and Grubisić, T.Z. (2009). A journey through mitogen-activated protein kinase and ochratoxin A interactions. Arh. Hig. Rada. Toksikol. 60: 449–456, https://doi.org/10.2478/10004-1254-60-2009-1969.Suche in Google Scholar PubMed
Sabater-Vilar, M., Maas, R.F., De Bosschere, H., Ducatelle, R., and Fink-Gremmels, J. (2004). Patulin produced by an Aspergillus clavatus isolated from feed containing malting residues associated with a lethal neurotoxicosis in cattle. Mycopathologia 158: 419–426, https://doi.org/10.1007/s11046-005-2877-x.Suche in Google Scholar PubMed
Sadler, T.W., Merrill, A.H., Stevens, V.L., Sullards, M.C., Wang, E., and Wang, P. (2002). Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology 66: 169–176, https://doi.org/10.1002/tera.10089.Suche in Google Scholar PubMed
Sakaguchi, H., Kadoshima, T., Soen, M., Narii, N., Ishida, Y., Ohgushi, M., Takahashi, J., Eiraku, M., and Sasai, Y. (2015). Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat. Commun. 6: 8896, https://doi.org/10.1038/ncomms9896.Suche in Google Scholar PubMed PubMed Central
Sava, V., Reunova, O., Velasquez, A., Harbison, R., and Sanchez-Ramos, J. (2006a). Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology 27: 82–92, https://doi.org/10.1016/j.neuro.2005.07.004.Suche in Google Scholar PubMed
Sava, V., Reunova, O., Velasquez, A., and Sanchez-Ramos, J. (2006b). Can low level exposure to ochratoxin-A cause parkinsonism? J. Neurol. Sci. 249: 68–75, https://doi.org/10.1016/j.jns.2006.06.006.Suche in Google Scholar PubMed
Sava, V., Velasquez, A., Song, S., and Sanchez-Ramos, J. (2007). Adult hippocampal neural stem/progenitor cells in vitro are vulnerable to the mycotoxin ochratoxin-A. Toxicol. Sci. 98: 187–197, https://doi.org/10.1093/toxsci/kfm093.Suche in Google Scholar PubMed
Scafuri, B., Varriale, A., Facchiano, A., D’auria, S., Raggi, M.E., and Marabotti, A. (2017). Binding of mycotoxins to proteins involved in neuronal plasticity: a combined in silico/wet investigation. Sci. Rep. 7: 15156, https://doi.org/10.1038/s41598-017-15148-4.Suche in Google Scholar PubMed PubMed Central
Schwarz, A., Rapaport, E., Hirschberg, K., and Futerman, A.H. (1995). A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching. J. Biol. Chem. 270: 10990–10998, https://doi.org/10.1074/jbc.270.18.10990.Suche in Google Scholar PubMed
Scofield, M.D., Korutla, L., Jackson, T.G., Kalivas, P.W., and Mackler, S.A. (2012). Nucleus Accumbens 1, a pox virus and zinc finger/Bric-a-brac tramtrack broad protein binds to TAR DNA-binding protein 43 and has a potential role in amyotrophic lateral sclerosis. Neuroscience 227: 44–54, https://doi.org/10.1016/j.neuroscience.2012.09.043.Suche in Google Scholar PubMed PubMed Central
Sehata, S., Kiyosawa, N., Makino, T., Atsumi, F., Ito, K., Yamoto, T., Teranishi, M., Baba, Y., Uetsuka, K., Nakayama, H., et al.. (2004). Morphological and microarray analysis of T-2 toxin-induced rat fetal brain lesion. Food Chem. Toxicol. 42: 1727–1736, https://doi.org/10.1016/j.fct.2004.06.006.Suche in Google Scholar PubMed
Shephard, G.S., Van Der Westhuizen, L., and Sewram, V. (2007). Biomarkers of exposure to fumonisin mycotoxins: a review. Food Addit. Contam. 24: 1196–1201, https://doi.org/10.1080/02652030701513818.Suche in Google Scholar PubMed
Shi, Y., Sun, L., Wang, M., Liu, J., Zhong, S., Li, R., Li, P., Guo, L., Fang, A., Chen, R., et al.. (2020). Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 18: e3000705, https://doi.org/10.1371/journal.pbio.3000705.Suche in Google Scholar PubMed PubMed Central
Shifrin, V.I. and Anderson, P. (1999). Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem. 274: 13985–13992, https://doi.org/10.1074/jbc.274.20.13985.Suche in Google Scholar PubMed
Shimada, T. and Guengerich, F.P. (1989). Evidence for cytochrome P-450nf, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. U. S. A. 86: 462–465, https://doi.org/10.1073/pnas.86.2.462.Suche in Google Scholar PubMed PubMed Central
Slanzi, A., Iannoto, G., Rossi, B., Zenaro, E., and Constantin, G. (2020). In vitro models of neurodegenerative diseases. Front Cell Dev. Biol. 8: 328, https://doi.org/10.3389/fcell.2020.00328.Suche in Google Scholar PubMed PubMed Central
Smits, L.M., Reinhardt, L., Reinhardt, P., Glatza, M., Monzel, A.S., Stanslowsky, N., Rosato-Siri, M.D., Zanon, A., Antony, P.M., Bellmann, J., et al.. (2019). Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinsons Dis. 5: 5, https://doi.org/10.1038/s41531-019-0078-4.Suche in Google Scholar PubMed PubMed Central
Song, E., Su, C., Fu, J., Xia, X., Yang, S., Xiao, C., Lu, B., Chen, H., Sun, Z., Wu, S., et al.. (2014). Selenium supplementation shows protective effects against patulin-induced brain damage in mice via increases in GSH-related enzyme activity and expression. Life Sci. 109: 37–43, https://doi.org/10.1016/j.lfs.2014.05.022.Suche in Google Scholar PubMed
Souto, N.S., Claudia Monteiro Braga, A., Lutchemeyer De Freitas, M., Rechia Fighera, M., Royes, L.F.F., Schneider Oliveira, M., and Furian, A.F. (2018). Aflatoxin B1 reduces non-enzymatic antioxidant defenses and increases protein kinase C activation in the cerebral cortex of young rats. Nutr. Neurosci. 21: 268–275, https://doi.org/10.1080/1028415x.2017.1278837.Suche in Google Scholar PubMed
Souto, P., Jager, A.V., Tonin, F.G., Petta, T., DI Gregório, M.C., Cossalter, A.M., Pinton, P., Oswald, I.P., Rottinghaus, G.E., and Oliveira, C.A.F. (2017). Determination of fumonisin B(1) levels in body fluids and hair from piglets fed fumonisin B(1)-contaminated diets. Food Chem. Toxicol. 108: 1–9, https://doi.org/10.1016/j.fct.2017.07.036.Suche in Google Scholar PubMed
Souza, C.F., Baldissera, M.D., Zeppenfeld, C.C., Descovi, S., Stefani, L.M., Baldisserotto, B., and Da Silva, A.S. (2019). Oxidative stress mediated the inhibition of cerebral creatine kinase activity in silver catfish fed with aflatoxin B1-contaminated diet. Fish Physiol. Biochem. 45: 63–70, https://doi.org/10.1007/s10695-018-0534-9.Suche in Google Scholar PubMed
Spencer Smith, J., Paul Williams, W., and Windham, G.L. (2019). Aflatoxin in maize: a review of the early literature from “moldy-corn toxicosis” to the genetics of aflatoxin accumulation resistance. Mycotoxin Res. 35: 111–128, https://doi.org/10.1007/s12550-018-00340-w.Suche in Google Scholar PubMed
Speth, C., Kupfahl, C., Pfaller, K., Hagleitner, M., Deutinger, M., Wurzner, R., Mohsenipour, I., Lass-Florl, C., and Rambach, G. (2011). Gliotoxin as putative virulence factor and immunotherapeutic target in a cell culture model of cerebral aspergillosis. Mol. Immunol. 48: 2122–2129, https://doi.org/10.1016/j.molimm.2011.07.005.Suche in Google Scholar PubMed
Stockmann-Juvala, H., Mikkola, J., Naarala, J., Loikkanen, J., Elovaara, E., and Savolainen, K. (2004a). Fumonisin B1-induced toxicity and oxidative damage in U-118MG glioblastoma cells. Toxicology 202: 173–183, https://doi.org/10.1016/j.tox.2004.05.002.Suche in Google Scholar PubMed
Stockmann-Juvala, H., Mikkola, J., Naarala, J., Loikkanen, J., Elovaara, E., and Savolainen, K. (2004b). Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radic. Res. 38: 933–942, https://doi.org/10.1080/10715760412331273205.Suche in Google Scholar PubMed
Stockmann-Juvala, H., Naarala, J., Loikkanen, J., Vahakangas, K., and Savolainen, K. (2006). Fumonisin B1-induced apoptosis in neuroblastoma, glioblastoma and hypothalamic cell lines. Toxicology 225: 234–241, https://doi.org/10.1016/j.tox.2006.06.006.Suche in Google Scholar
Sweeney, M.J. and Dobson, A.D. (1998). Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 43: 141–158, https://doi.org/10.1016/s0168-1605(98)00112-3.Suche in Google Scholar
Talley, S.M., Coley, P.D., and Kursar, T.A. (2002). The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2: 7, https://doi.org/10.1186/1472-6785-2-7.Suche in Google Scholar
Thuvander, A., Wikman, C., and Gadhasson, I. (1999). In vitro exposure of human lymphocytes to trichothecenes: individual variation in sensitivity and effects of combined exposure on lymphocyte function. Food Chem. Toxicol. 37: 639–648, https://doi.org/10.1016/s0278-6915(99)00038-1.Suche in Google Scholar
Tsunoda, M., Dugyala, R.R., and Sharma, R.P. (1998). Fumonisin B1-induced increases in neurotransmitter metabolite levels in different brain regions of BALB/c mice. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 120: 457–465, https://doi.org/10.1016/s0742-8413(98)10061-0.Suche in Google Scholar
van der Merwe, K.J., Steyn, P.S., Fourie, L., Scott, D.B., and Theron, J.J. (1965). Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 205: 1112–1113, https://doi.org/10.1038/2051112a0.Suche in Google Scholar PubMed
Venkataraman, P., Krishnamoorthy, G., Selvakumar, K., and Arunakaran, J. (2009). Oxidative stress alters creatine kinase system in serum and brain regions of polychlorinated biphenyl (Aroclor 1254)-exposed rats: protective role of melatonin. Basic Clin. Pharmacol. Toxicol. 105: 92–97, https://doi.org/10.1111/j.1742-7843.2009.00406.x.Suche in Google Scholar PubMed
Vidal, A., Claeys, L., Mengelers, M., Vanhoorne, V., Vervaet, C., Huybrechts, B., DE Saeger, S., and DE Boevre, M. (2018). Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci. Rep. 8: 5255, https://doi.org/10.1038/s41598-018-23526-9.Suche in Google Scholar PubMed PubMed Central
Vigasova, D., Nemergut, M., Liskova, B., and Damborsky, J. (2021). Multi-pathogen infections and Alzheimer’s disease. Microb. Cell Factories 20: 25, https://doi.org/10.1186/s12934-021-01520-7.Suche in Google Scholar PubMed PubMed Central
Vogel, D.Y., Kooij, G., Heijnen, P.D., Breur, M., Peferoen, L.A., Van Der Valk, P., De Vries, H.E., Amor, S., and Dijkstra, C.D. (2015). GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur. J. Immunol. 45: 1808–1819, https://doi.org/10.1002/eji.201444960.Suche in Google Scholar PubMed
von Tobel, J.S., Antinori, P., Zurich, M.G., Rosset, R., Aschner, M., Gluck, F., Scherl, A., and Monnet-Tschudi, F. (2014). Repeated exposure to Ochratoxin A generates a neuroinflammatory response, characterized by neurodegenerative M1 microglial phenotype. Neurotoxicology 44: 61–70, https://doi.org/10.1016/j.neuro.2014.04.005.Suche in Google Scholar
Vudathala, D.K., Prelusky, D.B., Ayroud, M., Trenholm, H.L., and Miller, J.D. (1994). Pharmacokinetic fate and pathological effects of 14C-fumonisin B1 in laying hens. Nat. Toxins 2: 81–88, https://doi.org/10.1002/nt.2620020206.Suche in Google Scholar
Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T., and Merrill, A.H.Jr. (1991). Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 266: 14486–14490, https://doi.org/10.1016/s0021-9258(18)98712-0.Suche in Google Scholar
Wang, J., Fitzpatrick, D.W., and Wilson, J.R. (1998a). Effect of T-2 toxin on blood-brain barrier permeability monoamine oxidase activity and protein synthesis in rats. Food Chem. Toxicol. 36: 955–961, https://doi.org/10.1016/s0278-6915(98)00079-9.Suche in Google Scholar
Wang, J., Fitzpatrick, D.W., and Wilson, J.R. (1998b). Effects of the trichothecene mycotoxin T-2 toxin on neurotransmitters and metabolites in discrete areas of the rat brain. Food Chem. Toxicol. 36: 947–953, https://doi.org/10.1016/s0278-6915(98)00078-7.Suche in Google Scholar
Wang, Y., Gallagher, E., Jorgensen, C., Troendle, E.P., Hu, D., Searson, P.C., and Ulmschneider, M.B. (2019). An experimentally validated approach to calculate the blood-brain barrier permeability of small molecules. Sci. Rep. 9: 6117, https://doi.org/10.1038/s41598-019-42272-0.Suche in Google Scholar
Wang, Y., Wang, L., Zhu, Y., and Qin, J. (2018). Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 18: 851–860, https://doi.org/10.1039/c7lc01084b.Suche in Google Scholar
Waring, P., Eichner, R.D., and Mullbacher, A. (1988). The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med. Res. Rev. 8: 499–524, https://doi.org/10.1002/med.2610080404.Suche in Google Scholar
Wild, C.P., Jiang, Y.Z., Sabbioni, G., Chapot, B., and Montesano, R. (1990). Evaluation of methods for quantitation of aflatoxin-albumin adducts and their application to human exposure assessment. Canc. Res. 50: 245–251.Suche in Google Scholar
Wilson, B.J., Hoekman, T., and Dettbarn, W.D. (1972). Effects of a fungus tremorgenic toxin (penitrem A) on transmission in rat phrenic nerve-diaphragm preparations. Brain Res. 40: 540–544, https://doi.org/10.1016/0006-8993(72)90159-x.Suche in Google Scholar
Wilson, T.M., Ross, P.F., Rice, L.G., Osweiler, G.D., Nelson, H.A., Owens, D.L., Plattner, R.D., Reggiardo, C., Noon, T.H., and Pickrell, J.W. (1990). Fumonisin B1 levels associated with an epizootic of equine leukoencephalomalacia. J. Vet. Diagn. Invest. 2: 213–216, https://doi.org/10.1177/104063879000200311.Suche in Google Scholar PubMed
Xicoy, H., Wieringa, B., and Martens, G.J. (2017). The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol. Neurodegener. 12: 10, https://doi.org/10.1186/s13024-017-0149-0.Suche in Google Scholar PubMed PubMed Central
Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H., and Suzuki, N. (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet. 20: 4530–4539, https://doi.org/10.1093/hmg/ddr394.Suche in Google Scholar PubMed
Yoon, S., Cong, W.T., Bang, Y., Lee, S.N., Yoon, C.S., Kwack, S.J., Kang, T.S., Lee, K.Y., Choi, J.K., and Choi, H.J. (2009). Proteome response to ochratoxin A-induced apoptotic cell death in mouse hippocampal HT22 cells. Neurotoxicology 30: 666–676, https://doi.org/10.1016/j.neuro.2009.04.013.Suche in Google Scholar PubMed
Zain, M.E. (2011). Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15: 129–144, https://doi.org/10.1016/j.jscs.2010.06.006.Suche in Google Scholar
Zhang, J., You, L., Wu, W., Wang, X., Chrienova, Z., Nepovimova, E., Wu, Q., and Kuca, K. (2020). The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): current status and future perspectives. Food Chem. Toxicol. 145: 111676, https://doi.org/10.1016/j.fct.2020.111676.Suche in Google Scholar PubMed
Zhang, X., Boesch-Saadatmandi, C., Lou, Y., Wolffram, S., Huebbe, P., and Rimbach, G. (2009). Ochratoxin A induces apoptosis in neuronal cells. Genes Nutr. 4: 41–48, https://doi.org/10.1007/s12263-008-0109-y.Suche in Google Scholar PubMed PubMed Central
Zhu, P. and Wang, L. (2017). Passive and active droplet generation with microfluidics: a review. Lab Chip 17: 34–75, https://doi.org/10.1039/c6lc01018k.Suche in Google Scholar PubMed
Zilinskas, R.A. (1997). Iraq’s biological weapons: the past as future? J. Am. Med. Assoc. 278: 418–424, https://doi.org/10.1001/jama.1997.03550050080037.Suche in Google Scholar
Zurich, M.G. and Honegger, P. (2011). Ochratoxin A at nanomolar concentration perturbs the homeostasis of neural stem cells in highly differentiated but not in immature three-dimensional brain cell cultures. Toxicol. Lett. 205: 203–208, https://doi.org/10.1016/j.toxlet.2011.06.007.Suche in Google Scholar PubMed
Zurich, M.G., Lengacher, S., Braissant, O., Monnet-Tschudi, F., Pellerin, L., and Honegger, P. (2005). Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience 134: 771–782, https://doi.org/10.1016/j.neuroscience.2005.04.030.Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Highlight: Drug Development for Neurodegenerative Diseases
- Drug development for neurodegenerative diseases
- The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research
- Emerging contributions of formyl peptide receptors to neurodegenerative diseases
- Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer’s disease
- Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: a modification regulating postsynaptic GABAAR density
- Anti-inflammatory dihydroxanthones from a Diaporthe species
- The antioxidant Rutin counteracts the pathological impact of α-synuclein on the enteric nervous system in vitro
- A liquid-culture-based screening approach to study compounds affecting inflammatory processes in Caenorhabditis elegans
Artikel in diesem Heft
- Frontmatter
- Highlight: Drug Development for Neurodegenerative Diseases
- Drug development for neurodegenerative diseases
- The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research
- Emerging contributions of formyl peptide receptors to neurodegenerative diseases
- Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer’s disease
- Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: a modification regulating postsynaptic GABAAR density
- Anti-inflammatory dihydroxanthones from a Diaporthe species
- The antioxidant Rutin counteracts the pathological impact of α-synuclein on the enteric nervous system in vitro
- A liquid-culture-based screening approach to study compounds affecting inflammatory processes in Caenorhabditis elegans