Startseite Real Time Modeling and Control of Three Tank Hybrid System
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Real Time Modeling and Control of Three Tank Hybrid System

  • K. Sathishkumar , V. Kirubakaran und T. K. Radhakrishnan EMAIL logo
Veröffentlicht/Copyright: 24. Februar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study discusses the modeling and linear quadratic regulator (LQR) controller based closed loop control of a three tank hybrid (TTH) process. A pseudo random binary signal (PRBS) based excitation data obtained from a real time TTH setup is utilized in validating its first principle model (FPM). Based on top and bottom interactions, various modes prevalent are considered based on steady state physical reachability analysis of the TTH for a given input range for controller design. The FPM is linearized using nominal values of process parameters using Jacobians from each existing mode. LQR controllers are designed for each mode. A supervisory structure is designed for selecting estimation model and controller for each appropriate mode. Results from real time servo tracking and disturbance rejection experiments are discussed.

References

[1] Branicky MS, Borkar VS, Mitter SK. A unified framework for hybrid control: model and optimal control theory. IEEE Trans Automat Contr. 1998;43:31–45.10.1109/9.654885Suche in Google Scholar

[2] Bemporad A, Morari M. Control of systems integrating logic dynamics and constraints. Automatica. 1999;35:407–412.10.1016/S0005-1098(98)00178-2Suche in Google Scholar

[3] Bemporad A, Morari M. Optimization-based hybrid control tools, in: proceedings of American Control Conference (ACC). IEEE, Arlington, VA, USA, 2001;1689–1703.10.1109/ACC.2001.945973Suche in Google Scholar

[4] Liberzon D. Switching in systems and control. Birkhauser, Ch. Introduction 2003:1–14.10.1007/978-1-4612-0017-8Suche in Google Scholar

[5] Nandola N, Bhartiya S. A multiple model approach for the predictive control of nonlinear hybrid system. J Process Control. 2008;18:131–148.10.1016/j.jprocont.2007.07.003Suche in Google Scholar

[6] Decarlo RA, Branicky MS, Pettersson S, Lennartson B. Perspectives and results on the stability and stabilizability of hybrid systems. Proc IEEE. 2000;88:1069–1082.10.1109/5.871309Suche in Google Scholar

[7] Fritz M, Liefeldt A, Engell S. Recipe-driven batch processes event handling in hybrid system simulation. IEEE International Symposium on computer aided control system design, 1999;138–143.Suche in Google Scholar

[8] Hoffmann I, Engell S. Identification of hybrid systems. American Control Conference (ACC), 1998;711–712.10.1109/ACC.1998.703499Suche in Google Scholar

[9] Engell S. Modelling and analysis of hybrid systems. Math Comp Simul. 1998;46:445–464.10.1016/S0378-4754(98)00076-7Suche in Google Scholar

[10] Till J, Engell S, Panek S, Stursberg O. Applied hybrid system optimization An empirical investigation of complexity. Contr Eng Pract. 2004;12:1291–1303.10.1016/j.conengprac.2004.04.003Suche in Google Scholar

[11] Stursberg O. A graph search algorithm for optimal control of hybrid systems. IEEE Conference on Decision and Control (CDC), 2004;1412–1417.10.1109/CDC.2004.1430241Suche in Google Scholar

[12] Engell S, Stursberg O. Hybrid control techniques for the design of industrial controllers, in conference on decision and control. European Control Conference. CDC-ECC’ 05. 44th IEEE Conference, 2005;5612–5617.Suche in Google Scholar

[13] Alvarado I, Limon D, Muñoz De La Peña D, Maestre JM, Ridao MA, Scheu H, et al. A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark. J Process Control. 2011;21:800–815.10.1016/j.jprocont.2011.03.003Suche in Google Scholar

[14] Kirubakaran V, Radhakrishnan TK, Sivakumaran N. Distributed multiparametric model predictive control design for a quadruple tank process. Measurement. 2014;47:841–854.10.1016/j.measurement.2013.10.011Suche in Google Scholar

[15] Prasad KH, Bhartiya S, Gudi RD. A gap metric based multiple model approach for nonlinear switched systems. J Process Control. 2012;22:1743–1754.10.1016/j.jprocont.2012.07.005Suche in Google Scholar

Received: 2017-4-24
Revised: 2017-5-29
Accepted: 2017-6-8
Published Online: 2018-2-24

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2017-0016/pdf
Button zum nach oben scrollen