Startseite Stability from rigidity via umbilicity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stability from rigidity via umbilicity

  • Julian Scheuer EMAIL logo
Veröffentlicht/Copyright: 28. April 2024

Abstract

We consider a range of geometric stability problems for hypersurfaces of spaceforms. One of the key results is an estimate relating the distance to a geodesic sphere of an embedded hypersurface with integral norms of the traceless Hessian operator of a level set function for the open set bounded by the hypersurface. As application, we give a unified treatment of many old and new stability problems arising in geometry and analysis. Those problems ask for spherical closeness of a hypersurface, given a geometric constraint. Examples include stability in Alexandroff’s soap bubble theorem in space forms, Serrin’s overdetermined problem, a Steklov problem involving the bi-Laplace operator and non-convex Alexandroff–Fenchel inequalities.


Communicated by Francesca Da Lio


Award Identifier / Grant number: SCHE 1879/3-1

Funding statement: This work was partially funded by the “Deutsche Forschungsgemeinschaft” (DFG, German research foundation); Project “Quermassintegral preserving local curvature flows”; Grant number SCHE 1879/3-1.

Acknowledgements

This work was made possible through a research scholarship the author received from the DFG and which was carried out at Columbia University in New York. The author would like to thank the DFG, Columbia University and especially Professor Simon Brendle for their support.

References

[1] A. Aftalion, J. Busca and W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations 4 (1999), no. 6, 907–932. 10.57262/ade/1366030751Suche in Google Scholar

[2] A. Alexandroff, Zur Theorie der gemischten Volumina von konvexen Körpern. II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Rec. Math. N.S. [Mat. Sbornik] 2 (1937), no. 6, 1205–1238. Suche in Google Scholar

[3] A. Alexandroff, Zur Theorie der gemischten Volumina von konvexen Körpern. III. Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf die beliebigen konvexen Körper, Rec. Math. N.S. [Mat. Sbornik] 3 (1938), 27–46. Suche in Google Scholar

[4] A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962), 303–315. 10.1007/BF02413056Suche in Google Scholar

[5] R. Arnold, On the Aleksandrov–Fenchel inequality and the stability of the sphere, Monatsh. Math. 115 (1993), no. 1–2, 1–11. 10.1007/BF01311206Suche in Google Scholar

[6] J. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), no. 3, 277–297. Suche in Google Scholar

[7] J. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), no. 3, 339–353. 10.1007/BF01215045Suche in Google Scholar

[8] J. Barbosa, M. do Carmo and J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), no. 1, 123–138. 10.1007/BF01161634Suche in Google Scholar

[9] E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differential Equations 229 (2006), no. 1, 1–23. 10.1016/j.jde.2006.04.003Suche in Google Scholar

[10] B. Brandolini, C. Nitsch, P. Salani and C. Trombetti, On the stability of the Serrin problem, J. Differential Equations 245 (2008), no. 6, 1566–1583. 10.1016/j.jde.2008.06.010Suche in Google Scholar

[11] B. Brandolini, C. Nitsch, P. Salani and C. Trombetti, Serrin-type overdetermined problems: An alternative proof, Arch. Ration. Mech. Anal. 190 (2008), no. 2, 267–280. 10.1007/s00205-008-0119-3Suche in Google Scholar

[12] S. Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 247–269. 10.1007/s10240-012-0047-5Suche in Google Scholar

[13] C. Chen, P. Guan, J. Li and J. Scheuer, A fully-nonlinear flow and quermassintegral inequalities in the sphere, Pure Appl. Math. Q. 18 (2022), no. 2, 437–461. 10.4310/PAMQ.2022.v18.n2.a4Suche in Google Scholar

[14] X. Cheng and A. V. Juárez, Optimal constants of L 2 inequalities for closed nearly umbilical hypersurfaces in space forms, Geom. Dedicata 177 (2015), 189–211. 10.1007/s10711-014-9985-zSuche in Google Scholar

[15] X. Cheng and D. Zhou, Rigidity for closed totally umbilical hypersurfaces in space forms, J. Geom. Anal. 24 (2014), no. 3, 1337–1345. 10.1007/s12220-012-9375-4Suche in Google Scholar

[16] J. Choe, Sufficient conditions for constant mean curvature surfaces to be round, Math. Ann. 323 (2002), no. 1, 143–156. 10.1007/s002080100300Suche in Google Scholar

[17] G. Ciraolo and F. Maggi, On the shape of compact hypersurfaces with almost-constant mean curvature, Comm. Pure Appl. Math. 70 (2017), no. 4, 665–716. 10.1002/cpa.21683Suche in Google Scholar

[18] G. Ciraolo, R. Magnanini and V. Vespri, Hölder stability for Serrin’s overdetermined problem, Ann. Mat. Pura Appl. (4) 195 (2016), no. 4, 1333–1345. 10.1007/s10231-015-0518-7Suche in Google Scholar

[19] G. Ciraolo, A. Roncoroni and L. Vezzoni, Quantitative stability for hypersurfaces with almost constant curvature in space forms, Ann. Mat. Pura Appl. (4) 200 (2021), no. 5, 2043–2083. 10.1007/s10231-021-01069-7Suche in Google Scholar

[20] G. Ciraolo and L. Vezzoni, A sharp quantitative version of Alexandrov’s theorem via the method of moving planes, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 2, 261–299. 10.4171/jems/766Suche in Google Scholar

[21] G. Ciraolo and L. Vezzoni, On Serrin’s overdetermined problem in space forms, Manuscripta Math. 159 (2019), no. 3–4, 445–452. 10.1007/s00229-018-1079-zSuche in Google Scholar

[22] G. Ciraolo and L. Vezzoni, Quantitative stability for hypersurfaces with almost constant mean curvature in the hyperbolic space, Indiana Univ. Math. J. 69 (2020), no. 4, 1105–1153. 10.1512/iumj.2020.69.7952Suche in Google Scholar

[23] T. H. Colding and W. P. Minicozzi, II, Ricci curvature and monotonicity for harmonic functions, Calc. Var. Partial Differential Equations 49 (2014), no. 3–4, 1045–1059. 10.1007/s00526-013-0610-zSuche in Google Scholar

[24] C. Delaunay, Sur la surface de revolution dont la courbaure moyenne est constante, J. Math. Pures Appl. 6 (1841), 309–314. Suche in Google Scholar

[25] C. De Lellis and S. Müller, Optimal rigidity estimates for nearly umbilical surfaces, J. Differential Geom. 69 (2005), no. 1, 75–110. 10.4310/jdg/1121540340Suche in Google Scholar

[26] C. De Lellis and S. Müller, A C 0 estimate for nearly umbilical surfaces, Calc. Var. Partial Differential Equations 26 (2006), no. 3, 283–296. 10.1007/s00526-006-0005-5Suche in Google Scholar

[27] M. Delgadino and F. Maggi, Alexandrov’s theorem revisited, Anal. PDE 12 (2019), no. 6, 1613–1642. 10.2140/apde.2019.12.1613Suche in Google Scholar

[28] A. De Rosa and S. Gioffrè, Absence of bubbling phenomena for non-convex anisotropic nearly umbilical and quasi-Einstein hypersurfaces, J. Reine Angew. Math. 780 (2021), 1–40. 10.1515/crelle-2021-0038Suche in Google Scholar

[29] K. Drach, Some sharp estimates for convex hypersurfaces of pinched normal curvature, J. Math. Phys. Anal. Geom. 11 (2015), no. 2, 111–122. 10.15407/mag11.02.111Suche in Google Scholar

[30] W. M. Feldman, Stability of Serrin’s problem and dynamic stability of a model for contact angle motion, SIAM J. Math. Anal. 50 (2018), no. 3, 3303–3326. 10.1137/17M1143009Suche in Google Scholar

[31] A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010), no. 1, 167–211. 10.1007/s00222-010-0261-zSuche in Google Scholar

[32] F. Fontenele and R. A. Núñez, A characterization of round spheres in space forms, Pacific J. Math. 297 (2018), no. 1, 67–78. 10.2140/pjm.2018.297.67Suche in Google Scholar

[33] A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011), no. 5, 4011–4030. 10.1016/j.aim.2010.11.007Suche in Google Scholar

[34] A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Invent. Math. 203 (2016), no. 3, 823–890. 10.1007/s00222-015-0604-xSuche in Google Scholar

[35] N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. (2) 168 (2008), no. 3, 941–980. 10.4007/annals.2008.168.941Suche in Google Scholar

[36] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299–314. 10.4310/jdg/1214445048Suche in Google Scholar

[37] C. Gerhardt, Curvature Problems, Ser. Geom. Topol. 39, International Press, Somerville, 2006. Suche in Google Scholar

[38] C. Gerhardt, Curvature flows in semi-Riemannian manifolds, Surveys in Differential Geometry. Vol. XII, Geometric Flows, Surv. Differ. Geom. 12, International Press, Somerville (2008), 113–165. 10.4310/SDG.2007.v12.n1.a4Suche in Google Scholar

[39] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Class. Math., Springer, Berlin, 2001. 10.1007/978-3-642-61798-0Suche in Google Scholar

[40] A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem, Shape Optimization and Spectral Theory, De Gruyter, Warsaw (2017), 120–148. 10.1515/9783110550887-005Suche in Google Scholar

[41] H. Groemer and R. Schneider, Stability estimates for some geometric inequalities, Bull. Lond. Math. Soc. 23 (1991), no. 1, 67–74. 10.1112/blms/23.1.67Suche in Google Scholar

[42] P. Guan and J. Li, The quermassintegral inequalities for k-convex starshaped domains, Adv. Math. 221 (2009), no. 5, 1725–1732. 10.1016/j.aim.2009.03.005Suche in Google Scholar

[43] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Math. Libr., Cambridge University, Cambridge, 1934. Suche in Google Scholar

[44] E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), no. 4, 451–470. 10.24033/asens.1354Suche in Google Scholar

[45] H. Hopf, Differential Geometry in the Large, Lecture Notes in Math. 1000, Springer, Berlin, 1989. 10.1007/3-540-39482-6Suche in Google Scholar

[46] W.-Y. Hsiang, Z. H. Teng and W. C. Yu, New examples of constant mean curvature immersions of ( 2 k - 1 ) -spheres into Euclidean 2 k -space, Ann. of Math. (2) 117 (1983), no. 3, 609–625. 10.2307/2007036Suche in Google Scholar

[47] C.-C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286–294. 10.7146/math.scand.a-10415Suche in Google Scholar

[48] C.-C. Hsiung, Some integral formulas for closed hypersurfaces in Riemannian space, Pacific J. Math. 6 (1956), 291–299. 10.2140/pjm.1956.6.291Suche in Google Scholar

[49] S. Ilias and O. Makhoul, A Reilly inequality for the first Steklov eigenvalue, Differential Geom. Appl. 29 (2011), no. 5, 699–708. 10.1016/j.difgeo.2011.07.005Suche in Google Scholar

[50] M. N. Ivaki, On the stability of the p-affine isoperimetric inequality, J. Geom. Anal. 24 (2014), no. 4, 1898–1911. 10.1007/s12220-013-9401-1Suche in Google Scholar

[51] M. N. Ivaki, Stability of the Blaschke–Santaló inequality in the plane, Monatsh. Math. 177 (2015), no. 3, 451–459. 10.1007/s00605-014-0651-1Suche in Google Scholar

[52] M. N. Ivaki, The planar Busemann–Petty centroid inequality and its stability, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3539–3563. 10.1090/tran/6503Suche in Google Scholar

[53] J. Jellet, Sur la surface dont la courbure moyenne est constante, J. Math. Pures Appl. 18 (1853), 163–167. Suche in Google Scholar

[54] S.-E. Koh and S.-W. Lee, Addendum to the paper: Sphere theorem by means of the ratio of mean curvature functions, Glasg. Math. J. 43 (2001), no. 2, 275–276. 10.1017/S0017089501020110Suche in Google Scholar

[55] S.-E. Koh and T. Um, Almost spherical convex hypersurfaces in 4 , Geom. Dedicata 88 (2001), no. 1–3, 67–80. 10.1023/A:1013175116790Suche in Google Scholar

[56] D. Koutroufiotis, Ovaloids which are almost spheres, Comm. Pure Appl. Math. 24 (1971), 289–300. 10.1002/cpa.3160240302Suche in Google Scholar

[57] S. Kumaresan and J. Prajapat, Serrin’s result for hyperbolic space and sphere, Duke Math. J. 91 (1998), no. 1, 17–28. 10.1215/S0012-7094-98-09102-5Suche in Google Scholar

[58] E. Kuwert and J. Scheuer, Asymptotic estimates for the Willmore flow with small energy, Int. Math. Res. Not. IMRN 2021 (2021), no. 18, 14252–14266. 10.1093/imrn/rnaa015Suche in Google Scholar

[59] K.-K. Kwong, H. Lee and J. Pyo, Weighted Hsiung–Minkowski formulas and rigidity of umbilical hypersurfaces, Math. Res. Lett. 25 (2018), no. 2, 597–616. 10.4310/MRL.2018.v25.n2.a13Suche in Google Scholar

[60] K. Leichtweiß, Nearly umbilical ovaloids in the n-space are close to spheres, Results Math. 36 (1999), no. 1–2, 102–109. 10.1007/BF03322105Suche in Google Scholar

[61] H. Liebmann, Ueber die Verbiegung der geschlossenen Flächen positiver Krümmung, Math. Ann. 53 (1900), no. 1–2, 81–112. 10.1007/BF01456030Suche in Google Scholar

[62] R. Magnanini and G. Poggesi, On the stability for Alexandrov’s soap bubble theorem, J. Anal. Math. 139 (2019), no. 1, 179–205. 10.1007/s11854-019-0058-ySuche in Google Scholar

[63] R. Magnanini and G. Poggesi, Nearly optimal stability for Serrin’s problem and the soap bubble theorem, Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 35. 10.1007/s00526-019-1689-7Suche in Google Scholar

[64] R. Magnanini and G. Poggesi, Serrin’s problem and Alexandrov’s soap bubble theorem: Enhanced stability via integral identities, Indiana Univ. Math. J. 69 (2020), no. 4, 1181–1205. 10.1512/iumj.2020.69.7925Suche in Google Scholar

[65] S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), no. 2, 711–748. 10.1512/iumj.1999.48.1562Suche in Google Scholar

[66] J. D. Moore, Almost spherical convex hypersurfaces, Trans. Amer. Math. Soc. 180 (1973), 347–358. 10.1090/S0002-9947-1973-0320964-2Suche in Google Scholar

[67] I. Newton, Arithmetica universalis: sive de compositione et resolutione arithmetica liber; Cui accessit Halleiana aequationum radices arthmetice inveniendi methodus, Tooke, Cantabriga, 1707. Suche in Google Scholar

[68] D. Perez, On nearly umbilical hypersurfaces, Ph.D. thesis, Universität Zürich, Zürich, 2011. Suche in Google Scholar

[69] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Transl. Math. Monogr. 35, American Mathematical Society, Providence, 1973. 10.1090/mmono/035Suche in Google Scholar

[70] G. Qiu and C. Xia, A generalization of Reilly’s formula and its applications to a new Heintze–Karcher type inequality, Int. Math. Res. Not. IMRN 2015 (2015), no. 17, 7608–7619. 10.1093/imrn/rnu184Suche in Google Scholar

[71] G. Qiu and C. Xia, Overdetermined boundary value problems in 𝕊 n , J. Math. Study 50 (2017), no. 2, 165–173. 10.4208/jms.v50n2.17.03Suche in Google Scholar

[72] R. C. Reilly, Extrinsic rigidity theorems for compact submanifolds of the sphere, J. Differential Geom. 4 (1970), 487–497. 10.4310/jdg/1214429644Suche in Google Scholar

[73] R. C. Reilly, Geometric applications of the solvability of Neumann problems on a Riemannian manifold, Arch. Ration. Mech. Anal. 75 (1980), no. 1, 23–29. 10.1007/BF00284618Suche in Google Scholar

[74] R. C. Reilly, Mean curvature, the Laplacian, and soap bubbles, Amer. Math. Monthly 89 (1982), no. 3, 180–188, 197–198. 10.1080/00029890.1982.11995407Suche in Google Scholar

[75] J. G. Rešetnjak, Certain estimates for almost umbilical surfaces, Sib. Math. J. 9 (1968), no. 4, 671–682. 10.1007/BF02199104Suche in Google Scholar

[76] A. Roncoroni, A Serrin-type symmetry result on model manifolds: An extension of the Weinberger argument, C. R. Math. Acad. Sci. Paris 356 (2018), no. 6, 648–656. 10.1016/j.crma.2018.04.012Suche in Google Scholar

[77] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoam. 3 (1987), no. 3–4, 447–453. 10.4171/rmi/58Suche in Google Scholar

[78] A. Ros, Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Differential Geom. 27 (1988), no. 2, 215–223. 10.4310/jdg/1214441779Suche in Google Scholar

[79] J. Roth, A remark on almost umbilical hypersurfaces, Arch. Math. (Brno) 49 (2013), no. 1, 1–7. 10.5817/AM2013-1-1Suche in Google Scholar

[80] J. Roth, A new result about almost umbilical hypersurfaces of real space forms, Bull. Aust. Math. Soc. 91 (2015), no. 1, 145–154. 10.1017/S0004972714000732Suche in Google Scholar

[81] J. Roth, Reilly-type inequalities for Paneitz and Steklov eigenvalues, Potential Anal. 53 (2020), no. 3, 773–798. 10.1007/s11118-019-09787-7Suche in Google Scholar

[82] J. Roth and J. Scheuer, Pinching of the first eigenvalue for second order operators on hypersurfaces of the Euclidean space, Ann. Global Anal. Geom. 51 (2017), no. 3, 287–304. 10.1007/s10455-016-9535-zSuche in Google Scholar

[83] J. Roth and J. Scheuer, Explicit rigidity of almost-umbilical hypersurfaces, Asian J. Math. 22 (2018), no. 6, 1075–1087. 10.4310/AJM.2018.v22.n6.a5Suche in Google Scholar

[84] J. Scheuer, Quantitative oscillation estimates for almost-umbilical closed hypersurfaces in Euclidean space, Bull. Aust. Math. Soc. 92 (2015), no. 1, 133–144. 10.1017/S0004972715000222Suche in Google Scholar

[85] J. Scheuer, Extrinsic curvature flows and applications, 2019–20 MATRIX Annals, MATRIX Book Ser. 4, Springer, Cham (2021), 747–772. 10.1007/978-3-030-62497-2_60Suche in Google Scholar

[86] J. Scheuer and C. Xia, Locally constrained inverse curvature flows, Trans. Amer. Math. Soc. 372 (2019), no. 10, 6771–6803. 10.1090/tran/7949Suche in Google Scholar

[87] J. Scheuer and C. Xia, Stability for Serrin’s problem and Alexandroff’s theorem in warped product manifolds, Int. Math. Res. Not. IMRN 2023 (2023), no. 24, 21086–21108. 10.1093/imrn/rnac294Suche in Google Scholar

[88] R. Schneider, Stability in the Aleksandrov–Fenchel–Jessen theorem, Mathematika 36 (1989), no. 1, 50–59. 10.1112/S0025579300013565Suche in Google Scholar

[89] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia Math. Appl. 151, Cambridge University, Cambridge, 2014. Suche in Google Scholar

[90] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971), 304–318. 10.1007/BF00250468Suche in Google Scholar

[91] J. Steiner, Jacob Steiner’s gesammelte Werke: Herausgegeben auf Veranlassung der königlich preussischen Akademie der Wissenschaften, Cambridge Libr. Collect. Math. 2, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139567930Suche in Google Scholar

[92] W. Stekloff, Sur les problèmes fondamentaux de la physique mathématique, Ann. Sci. Éc. Norm. Supér. (3) 19 (1902), 191–259. 10.24033/asens.510Suche in Google Scholar

[93] M. Struwe, Variational Methods, Springer, Berlin, 1990. 10.1007/978-3-662-02624-3Suche in Google Scholar

[94] J. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355–372. 10.1007/BF02571249Suche in Google Scholar

[95] K. Voss, Einige differentialgeometrische Kongruenzsätze für geschlossene Flächen und Hyperflächen, Math. Ann. 131 (1956), 180–218. 10.1007/BF01343255Suche in Google Scholar

[96] Q. Wang and C. Xia, Sharp bounds for the first non-zero Stekloff eigenvalues, J. Funct. Anal. 257 (2009), no. 8, 2635–2644. 10.1016/j.jfa.2009.06.008Suche in Google Scholar

[97] H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Ration. Mech. Anal. 43 (1971), 319–320. 10.1007/BF00250469Suche in Google Scholar

[98] H. C. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. Math. 121 (1986), no. 1, 193–243. 10.2140/pjm.1986.121.193Suche in Google Scholar

[99] J. Wu and C. Xia, On rigidity of hypersurfaces with constant curvature functions in warped product manifolds, Ann. Global Anal. Geom. 46 (2014), no. 1, 1–22. 10.1007/s10455-013-9405-xSuche in Google Scholar

Received: 2023-10-30
Accepted: 2024-03-10
Published Online: 2024-04-28
Published in Print: 2025-04-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2023-0119/html
Button zum nach oben scrollen