Startseite Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC

  • Markus J. Stemp , Suranjana Guha , F. Ulrich Hartl und José M. Barral
Veröffentlicht/Copyright: 6. September 2005
Biological Chemistry
Aus der Zeitschrift Band 386 Heft 8

Abstract

Recombinant expression of actin in bacteria results in non-native species that aggregate into inclusion bodies. Actin is a folding substrate of TRiC, the chaperonin of the eukaryotic cytosol. By employing bacterial in vitro translation lysates supplemented with purified chaperones, we have found that TRiC is the only eukaryotic chaperone necessary for correct folding of newly translated actin. The actin thus produced binds deoxyribonuclease I and polymerizes into filaments, hallmarks of its native state. In contrast to its rapid folding in the eukaryotic cytosol, actin translated in TRiC-supplemented bacterial lysate folds with slower kinetics, resembling the kinetics upon refolding from denaturant. Lysate supplementation with the bacterial chaperonin GroEL/ES or the DnaK/DnaJ/GrpE chaperones leads to prevention of actin aggregation, yet fails to support its correct folding. This combination of in vitro bacterial translation and TRiC-assisted folding allows a detailed analysis of the mechanisms necessary for efficient actin folding in vivo. In addition, it provides a robust alternative for the production of substantial amounts of eukaryotic proteins that otherwise misfold or lead to cellular toxicity upon expression in heterologous hosts.

:

Corresponding author

References

Agashe, V.R., Guha, S., Chang, H.C., Genevaux, P., Hayer-Hartl, M., Stemp, M., Georgopoulos, C., Hartl, F.U., and Barral, J.M. (2004). Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell117, 199–209.10.1016/S0092-8674(04)00299-5Suche in Google Scholar PubMed

Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science181, 223–230.10.1126/science.181.4096.223Suche in Google Scholar PubMed

Baneyx, F. and Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol.22, 1399–1408.10.1038/nbt1029Suche in Google Scholar PubMed

Blikstad, I., Markey, F., Carlsson, L., Persson, T., and Lindberg, U. (1978). Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell15, 935–943.10.1016/0092-8674(78)90277-5Suche in Google Scholar PubMed

Cooper, J.A. (1987). Effects of cytochalasin and phalloidin on actin. J. Cell Biol.105, 1473–1478.10.1083/jcb.105.4.1473Suche in Google Scholar PubMed PubMed Central

Ferreyra, R.G. and Frydman, J. (2000). Purification of the cytosolic chaperonin TRiC from bovine testis. Methods Mol. Biol.140, 153–160.10.1385/1-59259-061-6:153Suche in Google Scholar PubMed

Frydman, J. and Hartl, F.U. (1996). Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science272, 1497–1502.10.1126/science.272.5267.1497Suche in Google Scholar PubMed

Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.H., and Cowan, N.J. (1992). A cytoplasmic chaperonin that catalyzes β-actin folding. Cell69, 1043–1050.10.1016/0092-8674(92)90622-JSuche in Google Scholar PubMed

Hartl, F.U. and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858.10.1126/science.1068408Suche in Google Scholar PubMed

Hesterkamp, T., Deuerling, E., and Bukau, B. (1997). The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes. J. Biol. Chem.272, 21865–21871.10.1074/jbc.272.35.21865Suche in Google Scholar PubMed

Hitchcock, S.E., Carisson, L., and Lindberg, U. (1976). Depolymerization of F-actin by deoxyribonuclease I. Cell7, 531–542.10.1016/0092-8674(76)90203-8Suche in Google Scholar PubMed

Llorca, O., Martin-Benito, J., Ritco-Vonsovici, M., Grantham, J., Hynes, G.M., Willison, K.R., Carrascosa, J.L., and Valpuesta, J.M. (2000). Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J.19, 5971–5979.10.1093/emboj/19.22.5971Suche in Google Scholar PubMed PubMed Central

McCallum, C.D., Do, H., Johnson, A.E., and Frydman, J. (2000). The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribosome-bound nascent chains examined using photo-cross-linking. J. Cell Biol.149, 591–602.10.1083/jcb.149.3.591Suche in Google Scholar PubMed PubMed Central

Pardee, J.D. and Spudich, J.A. (1982). Purification of muscle actin. Methods Enzymol.85B, 164–181.10.1016/0076-6879(82)85020-9Suche in Google Scholar PubMed

Schägger, H. and von Jagow, G. (1991). Blue native electrophoresis for isolation of membrane protein complexes inenzymatically active form. Anal. Biochem.199, 223–231.10.1016/0003-2697(91)90094-ASuche in Google Scholar

Siegers, K., Waldmann, T., Leroux, M.R., Grein, K., Shevchenko, A., Schiebel, E., and Hartl, F.U. (1999). Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J.18, 75–84.10.1093/emboj/18.1.75Suche in Google Scholar PubMed PubMed Central

Siegers, K., Bolter, B., Schwarz, J.P., Bottcher, U.M., Guha, S., and Hartl, F.U. (2003). TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J.22, 5230–5240.10.1093/emboj/cdg483Suche in Google Scholar PubMed PubMed Central

Steinmetz, M.O., Stoffler, D., Muller, S.A., Jahn, W., Wolpensinger, B., Goldie, K.N., Engel, A., Faulstich, H., and Aebi, U. (1998). Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative. J. Mol. Biol.276, 1–6.10.1006/jmbi.1997.1529Suche in Google Scholar PubMed

Szabo, A., Langer, T., Schroder, H., Flanagan, J., Bukau, B., and Hartl, F.U. (1994). The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA91, 10345–10349.10.1073/pnas.91.22.10345Suche in Google Scholar PubMed PubMed Central

Tian, G., Vainberg, I.E., Tap, W.D., Lewis, S.A., and Cowan, N.J. (1995). Specificity in chaperonin-mediated protein folding. Nature375, 250–253.10.1038/375250a0Suche in Google Scholar PubMed

Published Online: 2005-09-06
Published in Print: 2005-08-01

©2005 by Walter de Gruyter Berlin New York

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.088/html
Button zum nach oben scrollen