Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases
-
Roberta Gabbianelli
, Melania D’Orazio , Francesca Pacello , Peter O’Neill , Laura Nicolini , Giuseppe Rotilio und Andrea Battistoni
Abstract
Bacterial and eukaryotic Cu,Zn superoxide dismutases show remarkable differences in the active site region and in their quaternary structure organization. We report here a functional comparison between four Cu,Zn superoxide dismutases from Gram-negative bacteria and the eukaryotic bovine enzyme. Our data indicate that bacterial dimeric variants are characterized by catalytic rates higher than that of the bovine enzyme, probably due to the solvent accessibility of their active site. Prokaryotic Cu,Zn superoxide dismutases also show higher resistance to hydrogen peroxide inactivation and lower HCO3--dependent peroxidative activity. Moreover, unlike the eukaryotic enzyme, all bacterial variants are susceptible to inactivation by chelating agents and show variable sensitivity to proteolytic attack, with the E. coli monomeric enzyme showing higher rates of inactivation by EDTA and proteinase K. We suggest that differences between individual bacterial variants could be due to the influence of modifications at the dimer interface on the enzyme conformational flexibility.
References
Bannister, J.V., Bannister, W.H., and Rotilio, G. (1987). Aspects of the structure, function and application of superoxide dismutase. CRC Crit. Rev. Biochem.22, 111–180.10.3109/10409238709083738Suche in Google Scholar
Battistoni, A. (2003). Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis. Biochem. Soc. Trans.6, 1326–1329.10.1042/bst0311326Suche in Google Scholar
Battistoni, A., Folcarelli, S., Cervone, L., Polizio, F., Desideri, A., Giartosio, A., and Rotilio, G. (1998a). Role of the dimericstructure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli. J. Biol. Chem.273, 5655–5661.10.1074/jbc.273.10.5655Suche in Google Scholar
Battistoni, A., Donnarumma, G., Greco, R., Valenti, P., and Rotilio, G. (1998b). Overexpression of a hydrogen peroxide-resistant periplasmic Cu,Zn superoxide dismutase protects Escherichia coli from macrophage killing. Biochem. Biophys. Res. Commun.243, 804–807.10.1006/bbrc.1998.8182Suche in Google Scholar
Battistoni, A., Pacello, F., Mazzetti, A.P, Capo, C., Kroll, S.J., Langford, P., Sansone, A., Donnarumma, G., Valenti, P., and Rotilio, G. (2001). A histidine-rich metal binding domain at the N terminus of Cu,Zn-superoxide dismutases from pathogenic bacteria: a novel strategy for metal chaperoning. J. Biol. Chem.276, 30315–30325.10.1074/jbc.M010527200Suche in Google Scholar
Berducci, G., Mazzetti, A.P., Rotilio, G., and Battistoni, A. (2004). Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase. FEBS Lett.569, 289–292.10.1016/j.febslet.2004.06.008Suche in Google Scholar
Borders Jr, C.L. and Fridovich, I. (1985). A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch. Biochem. Biophys.241, 472–476.Suche in Google Scholar
Bordo, D., Pesce, A., Bolognesi, M., Stroppolo, ME., Falconi, M., and Desideri, A. (2001). Copper-zinc superoxide dismutase in prokaryotes and eukaryotes. In: Handbook of Metalloproteins, A. Messerschmidt, R. Huber, T. Poulos and K. Wieghardt, eds. (Chichester, UK: John Wiley & Sons, Ltd.) pp. 1284–1300.Suche in Google Scholar
Bordo, D., Matak, D., Djinovic-Carugo, K., Rosano, C., Pesce, A., Bolognesi, M., Stroppolo, M.E., Falconi, M., Battistoni, A., and Desideri, A. (1999). Evolutionary constrains for dimer formation in prokaryotic Cu,Zn superoxide dismutase. J. Mol. Biol.285, 283–296Suche in Google Scholar
Bourne, Y., Redford, S.M., Steinman, H.M., Lepock, J.R., Tainer, J.A., and Getzoff, E.D. (1996). Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase.Proc. Natl. Acad. Sci. USA93, 12774–12779.10.1073/pnas.93.23.12774Suche in Google Scholar
Bray, R.C., Cockle, S.A., Fielden, E.M., Roberts, P.B., Rotilio, G.,and Calabrese, L. (1974). Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem. J.139, 43–48.10.1042/bj1390043Suche in Google Scholar
Djinovic, K., Gatti, G., Coda, A., Antolini, L., Pelosi, G., Desideri A., Falconi, M., Marmocchi, F., Rotilio, G., and Bolognesi, M. (1992). Crystal structure of yeast Cu,Zn superoxide dismutase. Crystallographic refinement at 2.5 Å resolution. J. Mol. Biol.225, 791–809.10.1016/0022-2836(92)90401-5Suche in Google Scholar
Djinovic Carugo, K., Battistoni, A., Carrì, M.T., Polticelli, F., Desideri, A., Rotilio, G., Wilson, K.S., and Bolognesi, M. (1996). Three-dimensional structure of Xenopus laevis Cu,Zn superoxide dismutase b determined by X-ray crystallography. Acta Cryst. D52, 176–188.Suche in Google Scholar
D’Orazio, M., Battistoni, A., Stroppolo, M.E., and Desideri, A. (2000). Single mutation induces a metal-dependent subunit association in dimeric Cu,Zn superoxide dismutase. Biochem. Biophys. Res. Commun.272, 81–83.10.1006/bbrc.2000.2730Suche in Google Scholar PubMed
Falconi, M.,. Parrilli, L., Battistoni, A., and Desideri, A. (2002). Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation. Proteins47, 513–520.10.1002/prot.10094Suche in Google Scholar
Folcarelli, S., Battistoni, A., Falconi, M., O’Neill, P., Rotilio, G., and Desideri, A. (1998). Conserved enzyme-substrate electrostatic attraction in prokaryotic Cu,Zn superoxide dismutase. Biochem. Biophys. Res. Commun.244, 908–911.10.1006/bbrc.1998.8364Suche in Google Scholar
Gabbianelli, R., Signoretti, C., Marta, I., Battistoni, A., and Nicolini, I. (2004). Vibrio cholerae periplasmic superoxide dismutase: isolation of the gene and overexpression of the protein. J. Biotechnol.109, 123–130.10.1016/j.jbiotec.2004.01.002Suche in Google Scholar
Hodgson, E.K., and Fridovich, I. (1975). The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry14, 5294–5299.10.1021/bi00695a010Suche in Google Scholar
Huffman, D.L., and O’Halloran, T.V. (2001). Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem.70, 677–701.10.1146/annurev.biochem.70.1.677Suche in Google Scholar
Kitagawa, Y., Tanaka, N., Hata, Y., Kusonoki, M., Lee, G., Katsube, Y., Asada, K., Aibare, S., and Morita, Y. (1991). Three-dimensional structure of Cu,Zn Superoxide dismutase from spinach at 2.0 Å resolution. J. Biochem.109, 447–485.10.1093/oxfordjournals.jbchem.a123407Suche in Google Scholar
Liochev, S.I., and Fridovich, I. (1999). On the role of bicarbonate in peroxidations catalyzed by Cu,Zn superoxide dismutase. Free Radic. Biol. Med.27, 1444–1447.10.1016/S0891-5849(99)00190-2Suche in Google Scholar
Lowry, H.O., Rosebrough, N.J., Farr, L.A., and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem.193, 265–275.10.1016/S0021-9258(19)52451-6Suche in Google Scholar
Marklund, S., and Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem.47, 469–474.10.1111/j.1432-1033.1974.tb03714.xSuche in Google Scholar PubMed
Okado-Matsumoto, A., and Fridovich, I. (2001). Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem.276, 38388–38393.10.1074/jbc.M105395200Suche in Google Scholar PubMed
O’Neill, P., Davies, S., Fielden, E.M., Calabrese, L., Capo, C., Marmocchi, F., Natoli, G., and Rotilio, G. (1988). The effects of pH and various salts upon the activity of a series of superoxide dismutase. Biochem. J.251, 41–46.10.1042/bj2510041Suche in Google Scholar
Pacello, F., Kroll, S.J., Langford, P., Indiani, C., Smulevich, G.,Desideri, A., Rotilio, G., and Battistoni, A. (2001). A novel heme protein: the Cu,Zn superoxide dismutase from Haemophilus ducreyi. J. Biol. Chem.276, 30326–30334.10.1074/jbc.M010488200Suche in Google Scholar
Parge, H.E., Hallewell, R.A., and Tainer, J.A. (1992) Atomic structures of wild type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA89, 6109–6113.10.1073/pnas.89.13.6109Suche in Google Scholar
Pesce, A., Capasso, C., Battistoni, A., Folcarelli, S., Rotilio, G.,Desideri, A., and Bolognesi, M. (1997). Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli. J. Mol. Biol.274, 408–420.10.1006/jmbi.1997.1400Suche in Google Scholar
Pesce, A., Battistoni, A., Stroppolo, M.E., Polizio, F., Nardini, M., Kroll, J.S., Langford, P.R., O’Neill, P., Sette, M., Desideri, A., and Bolognesi, M. (2000). Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene. J. Mol. Biol.302, 465–478.10.1006/jmbi.2000.4074Suche in Google Scholar
Rotilio, G., Calabrese, L., and Coleman, J. (1973). Magnetic circular dichroism of cobalt-copper and zinc-copper bovine superoxide dismutase. J. Biol. Chem.248, 3853–3859.10.1016/S0021-9258(19)43813-1Suche in Google Scholar
Stroppolo, M.E., Sette, M., O’Neill, P., Polizio, F., Cambria, M.T., and Desideri, A. (1998). Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme. Biochemistry37, 12287–12292.10.1021/bi980563bSuche in Google Scholar
Stroppolo, M.E., Pesce, A., Falconi, M., O’Neill, P., Bolognesi, M., and Desideri, A. (2000). Single mutation at the intersubunit interface confers extra efficiency to Cu,Zn superoxide dismutase. FEBS Lett.483, 17–20.10.1016/S0014-5793(00)01967-0Suche in Google Scholar
Stroppolo, M.E., Pesce, A., D’Orazio, M., O’Neill, P., Bordo, D., Rosano, C., Milani, M. , Battistoni, A., Bolognesi, M., and Desideri, A. (2001). Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase. J. Mol. Biol.308, 555–563.10.1006/jmbi.2001.4606Suche in Google Scholar PubMed
Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R., and Culotta, V.C. (2001). A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem.276, 38084–38089.10.1074/jbc.M105296200Suche in Google Scholar PubMed
Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S., and Richardson D.C. (1982). Determination and analysis of the 2 Å structure of copper zinc superoxide dismutase. J. Mol. Biol.160, 287–303.10.1016/0022-2836(82)90174-7Suche in Google Scholar
© Walter de Gruyter
Artikel in diesem Heft
- Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade
- Regulatory role of membrane-bound peptidases in the progression of gynecologic malignancies
- Functional genomics identifies novel and diverse molecular targets of nutrients in vivo
- Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction
- Functional GATA- and initiator-like-elements exhibit a similar arrangement in the promoters of Caenorhabditis elegans polyamine synthesis enzymes
- Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region
- Recombinant expression, purification and cross-reactivity of chenopod profilin: rChe a 2 as a good marker for profilin sensitization
- Cellular prion protein acquires resistance to proteolytic degradation following copper ion binding
- Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases
- Tumour-expressed CD43 (sialophorin) mediates tumour-mesothelial cell adhesion
Artikel in diesem Heft
- Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade
- Regulatory role of membrane-bound peptidases in the progression of gynecologic malignancies
- Functional genomics identifies novel and diverse molecular targets of nutrients in vivo
- Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction
- Functional GATA- and initiator-like-elements exhibit a similar arrangement in the promoters of Caenorhabditis elegans polyamine synthesis enzymes
- Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region
- Recombinant expression, purification and cross-reactivity of chenopod profilin: rChe a 2 as a good marker for profilin sensitization
- Cellular prion protein acquires resistance to proteolytic degradation following copper ion binding
- Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases
- Tumour-expressed CD43 (sialophorin) mediates tumour-mesothelial cell adhesion