Abstract
The calcium-permeable cation channel TRPM3 can be activated by heat and the endogenous steroid pregnenolone sulfate. TRPM3’s best understood function is its role as a peripheral noxious heat sensor in mice. However, the channel is expressed in various tissues and cell types including neurons as well as glial and epithelial cells. TRPM3 expression patterns differ between species and change during development. Furthermore, a plethora of TRPM3 variants that result from alternative splicing have been identified and the majority of these isoforms are yet to be characterized. Moreover, the mechanisms underlying regulation of TRPM3 are largely unexplored. In addition, a micro-RNA gene (miR-204) is located within the TRPM3 gene. This complexity makes it difficult to obtain a clear picture of TRPM3 characteristics. However, a clear picture is needed to unravel TRPM3’s full potential as experimental tool, diagnostic marker and therapeutic target. Therefore, the newest data related to TRPM3 have to be discussed and to be put in context as soon as possible to be up-to-date and to accelerate the translation from bench to bedside. The aim of this review is to highlight recent results and developments with particular focus on findings from studies involving ocular tissues and cells or peripheral neurons of rodents and humans.
Acknowledgments
The author would like to thank Kyra Sohns for critically reading the manuscript.
-
Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
Agosto, M.A., Zhang, Z., He, F., Anastassov, I.A., Wright, S.J., McGehee, J., and Wensel, T.G. (2014). Oligomeric state of purified transient receptor potential melastatin-1 (TRPM1), a protein essential for dim light vision. J. Biol. Chem. 289: 27019–27033, https://doi.org/10.1074/jbc.m114.593780.Search in Google Scholar
Alkhatib, O., da Costa, R., Gentry, C., Quallo, T., Bevan, S., and Andersson, D.A. (2019). Promiscuous G-protein-coupled receptor inhibition of transient receptor potential melastatin 3 ion channels by Gβγ subunits. J. Neurosci. 39: 7840–7852, https://doi.org/10.1523/jneurosci.0882-19.2019.Search in Google Scholar PubMed PubMed Central
Alonso-Carbajo, L., Alpizar, Y.A., Startek, J.B., Lopez-Lopez, J.R., Perez-Garcia, M.T., and Talavera, K. (2019). Activation of the cation channel TRPM3 in perivascular nerves induces vasodilation of resistance arteries. J. Mol. Cell. Cardiol. 129: 219–230, https://doi.org/10.1016/j.yjmcc.2019.03.003.Search in Google Scholar PubMed
Anand, D., Kakrana, A., Siddam, A.D., Huang, H., Saadi, I., and Lachke, S.A. (2018). RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery. Hum. Genet. 137: 941–954, https://doi.org/10.1007/s00439-018-1958-0.Search in Google Scholar PubMed PubMed Central
Badheka, D., Borbiro, I., and Rohacs, T. (2015). Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. J. Gen. Physiol. 146: 65–77, https://doi.org/10.1085/jgp.201411336.Search in Google Scholar PubMed PubMed Central
Badheka, D., Yudin, Y., Borbiro, I., Hartle, C.M., Yazici, A., Mirshahi, T., and Rohacs, T. (2017). Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. eLife 6, https://doi.org/10.7554/eLife.26147.Search in Google Scholar PubMed PubMed Central
Bai, L., Wang, X., Li, Z., Kong, C., Zhao, Y., Qian, J.L., Kan, Q., Zhang, W., and Xu, J.T. (2016). Upregulation of chemokine CXCL12 in the dorsal root ganglia and spinal cord contributes to the development and maintenance of neuropathic pain following spared nerve injury in rats. Neurosci. Bull. 32: 27–40, https://doi.org/10.1007/s12264-015-0007-4.Search in Google Scholar PubMed PubMed Central
Bamps, D., Vriens, J., de Hoon, J., and Voets, T. (2021). TRP channel cooperation for nociception: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 61: 655–677, https://doi.org/10.1146/annurev-pharmtox-010919-023238.Search in Google Scholar PubMed
Becker, A., Gotz, C., Montenarh, M., and Philipp, S.E. (2021). Control of TRPM3 ion channels by protein kinase CK2-mediated phosphorylation in pancreatic β-cells of the line INS-1. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms222313133.Search in Google Scholar PubMed PubMed Central
Behrendt, M. (2019). Transient receptor potential channels in the context of nociception and pain – recent insights into TRPM3 properties and function. Biol. Chem. 400: 917–926, https://doi.org/10.1515/hsz-2018-0455.Search in Google Scholar PubMed
Behrendt, M., Gruss, F., Enzeroth, R., Dembla, S., Zhao, S., Crassous, P.A., Mohr, F., Nys, M., Louros, N., Gallardo, R., et al.. (2020). The structural basis for an on-off switch controlling Gbetagamma-mediated inhibition of TRPM3 channels. Proc. Natl. Acad. Sci. U.S.A. 117: 29090–29100, https://doi.org/10.1073/pnas.2001177117.Search in Google Scholar PubMed PubMed Central
Behrendt, M., Keiser, M., Hoch, M., and Naim, H.Y. (2009). Impaired trafficking and subcellular localization of a mutant lactase associated with congenital lactase deficiency. Gastroenterology 136: 2295–2303, https://doi.org/10.1053/j.gastro.2009.01.041.Search in Google Scholar PubMed
Behrendt, M., Polaina, J., and Naim, H.Y. (2010). Structural hierarchy of regulatory elements in the folding and transport of an intestinal multidomain protein. J. Biol. Chem. 285: 4143–4152, https://doi.org/10.1074/jbc.m109.060780.Search in Google Scholar
Bennett, T.M., Mackay, D.S., Siegfried, C.J., and Shiels, A. (2014). Mutation of the melastatin-related cation channel, TRPM3, underlies inherited cataract and glaucoma. PLoS One 9: e104000, https://doi.org/10.1371/journal.pone.0104000.Search in Google Scholar PubMed PubMed Central
Brown, R.L., Xiong, W.H., Peters, J.H., Tekmen-Clark, M., Strycharska-Orczyk, I., Reed, B.T., Morgans, C.W., and Duvoisin, R.M. (2015). TRPM3 expression in mouse retina. PLoS One 10: e0117615, https://doi.org/10.1371/journal.pone.0117615.Search in Google Scholar PubMed PubMed Central
Corona, C., Pasini, S., Liu, J., Amar, F., Greene, L.A., and Shelanski, M.L. (2018). Activating transcription factor 4 (ATF4) regulates neuronal activity by controlling GABABR trafficking. J. Neurosci. 38: 6102–6113, https://doi.org/10.1523/jneurosci.3350-17.2018.Search in Google Scholar
Dembla, S., Behrendt, M., Mohr, F., Goecke, C., Sondermann, J., Schneider, F.M., Schmidt, M., Stab, J., Enzeroth, R., Leitner, M.G., et al.. (2017). Anti-nociceptive action of peripheral mu-opioid receptors by G-γ protein-mediated inhibition of TRPM3 channels. eLife 6, https://doi.org/10.7554/eLife.26280.Search in Google Scholar PubMed PubMed Central
de Oliveira, B.A., Alves Rodrigues Santos, S.A., Menezes Pereira, E.W., Nogueira, A.B., Vieira Neto, A.E., de Melo Junior, J.M.A., Damasceno, M., Quintans-Junior, L.J., Sessle, B.J., Magalhaes, F.E.A., et al.. (2020). Orofacial antinociceptive effect of nifedipine in rodents is mediated by TRPM3, TRPA1, and NMDA processes. J. Oral Facial Pain Headache 34: 174–186, https://doi.org/10.11607/ofph.2491.Search in Google Scholar PubMed
de Sainte Agathe, J.M., Van-Gils, J., Lasseaux, E., Arveiler, B., Lacombe, D., Pfirrmann, C., Raclet, V., Gaston, L., Plaisant, C., Aupy, J., et al.. (2020). Confirmation and expansion of the phenotype Associated with the recurrent p.Val837Met variant in TRPM3. Eur. J. Med. Genet. 63: 103942, https://doi.org/10.1016/j.ejmg.2020.103942.Search in Google Scholar PubMed
Drews, A., Mohr, F., Rizun, O., Wagner, T.F., Dembla, S., Rudolph, S., Lambert, S., Konrad, M., Philipp, S.E., Behrendt, M., et al.. (2014). Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels. Br. J. Pharmacol. 171: 1019–1032, https://doi.org/10.1111/bph.12521.Search in Google Scholar PubMed PubMed Central
Dubovy, P., Klusakova, I., Svizenska, I., and Brazda, V. (2010). Spatio-temporal changes of SDF1 and its CXCR4 receptor in the dorsal root ganglia following unilateral sciatic nerve injury as a model of neuropathic pain. Histochem. Cell Biol. 133: 323–337, https://doi.org/10.1007/s00418-010-0675-0.Search in Google Scholar PubMed
Dyment, D.A., Terhal, P.A., Rustad, C.F., Tveten, K., Griffith, C., Jayakar, P., Shinawi, M., Ellingwood, S., Smith, R., van Gassen, K., et al.. (2019). De novo substitutions of TRPM3 cause intellectual disability and epilepsy. Eur. J. Hum. Genet. 27: 1611–1618, https://doi.org/10.1038/s41431-019-0462-x.Search in Google Scholar PubMed PubMed Central
Eaton-Fitch, N., Cabanas, H., du Preez, S., Staines, D., and Marshall-Gradisnik, S. (2021). The effect of IL-2 stimulation and treatment of TRPM3 on channel co-localisation with PIP2 and NK cell function in myalgic encephalomyelitis/chronic fatigue syndrome patients. J. Transl. Med. 19: 306, https://doi.org/10.1186/s12967-021-02974-4.Search in Google Scholar PubMed PubMed Central
Frühwald, J., Camacho Londono, J., Dembla, S., Mannebach, S., Lis, A., Drews, A., Wissenbach, U., Oberwinkler, J., and Philipp, S.E. (2012). Alternative splicing of a protein domain indispensable for function of transient receptor potential melastatin 3 (TRPM3) ion channels. J. Biol. Chem. 287: 36663–36672, https://doi.org/10.1074/jbc.M112.396663.Search in Google Scholar PubMed PubMed Central
Gauthier, L.W., Chatron, N., Cabet, S., Labalme, A., Carneiro, M., Poirot, I., Delvert, C., Gleizal, A., Lesca, G., and Putoux, A. (2021). Description of a novel patient with the TRPM3 recurrent p.Val837Met variant. Eur. J. Med. Genet. 64: 104320, https://doi.org/10.1016/j.ejmg.2021.104320.Search in Google Scholar PubMed
Ghosh, D., Pinto, S., Danglot, L., Vandewauw, I., Segal, A., Van Ranst, N., Benoit, M., Janssens, A., Vennekens, R., Vanden Berghe, P., et al.. (2016). VAMP7 regulates constitutive membrane incorporation of the cold-activated channel TRPM8. Nat. Commun. 7: 10489, https://doi.org/10.1038/ncomms10489.Search in Google Scholar PubMed PubMed Central
Gilliam, J.C. and Wensel, T.G. (2011). TRP channel gene expression in the mouse retina. Vis. Res. 51: 2440–2452, https://doi.org/10.1016/j.visres.2011.10.009.Search in Google Scholar PubMed PubMed Central
Haoui, M., Petersen, N.T., Bjorkgren, I., Chung, D.H., and Lishko, P.V. (2021). Choroid plexus epithelial cells as a model to study nongenomic steroid signaling and its effect on ion channel function. Methods Enzymol. 654: 297–314, https://doi.org/10.1016/bs.mie.2021.03.004.Search in Google Scholar PubMed
Held, K., Aloi, V.D., Freitas, A.C.N., Janssens, A., Segal, A., Przibilla, J., Philipp, S.E., Wang, Y.T., Voets, T., and Vriens, J. (2020). Pharmacological properties of TRPM3 isoforms are determined by the length of the pore loop. Br. J. Pharmacol. 1–6, doi:https://doi.org/10.1111/bph.15223.Search in Google Scholar PubMed
Held, K., Gruss, F., Aloi, V.D., Janssens, A., Ulens, C., Voets, T., and Vriens, J. (2018). Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. 596: 2413–2432, https://doi.org/10.1113/jp274124.Search in Google Scholar PubMed PubMed Central
Held, K., Kichko, T., De Clercq, K., Klaassen, H., Van Bree, R., Vanherck, J.C., Marchand, A., Reeh, P.W., Chaltin, P., Voets, T., et al.. (2015). Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proc. Natl. Acad. Sci. U.S.A. 112: E1363–E1372, https://doi.org/10.1073/pnas.1419845112.Search in Google Scholar PubMed PubMed Central
Held, K. and Toth, B.I. (2021). TRPM3 in brain (patho)physiology. Front. Cell Dev. Biol. 9: 635659, https://doi.org/10.3389/fcell.2021.635659.Search in Google Scholar PubMed PubMed Central
Hoffmann, A., Grimm, C., Kraft, R., Goldbaum, O., Wrede, A., Nolte, C., Hanisch, U.K., Richter-Landsberg, C., Bruck, W., Kettenmann, H., et al.. (2010). TRPM3 is expressed in sphingosine-responsive myelinating oligodendrocytes. J. Neurochem. 114: 654–665, https://doi.org/10.1111/j.1471-4159.2010.06644.x.Search in Google Scholar PubMed
Hughes, S., Pothecary, C.A., Jagannath, A., Foster, R.G., Hankins, M.W., and Peirson, S.N. (2012). Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception. Eur. J. Neurosci. 35: 34–43, https://doi.org/10.1111/j.1460-9568.2011.07944.x.Search in Google Scholar PubMed PubMed Central
Kanewska, A., Ito, M., Karasawa, Y., Inada, M., Garreis, F., Paulsen, F., and Takeuchi, M. (2020). Developmental change in the gene expression of transient receptor potential melastatin channel 3 (TRPM3) in murine lacrimal gland. Ann. Anat. 231: 151551, https://doi.org/10.1016/j.aanat.2020.151551.Search in Google Scholar PubMed
Kang, Q., Yang, L., Liao, H., Yang, S., Kuang, X., Ning, Z., Liao, C., and Chen, B. (2021). A Chinese patient with developmental and epileptic encephalopathies (DEE) carrying a TRPM3 gene mutation: a paediatric case report. BMC Pediatr. 21: 256, https://doi.org/10.1186/s12887-021-02719-8.Search in Google Scholar PubMed PubMed Central
Karali, M., Peluso, I., Marigo, V., and Banfi, S. (2007). Identification and characterization of microRNAs expressed in the mouse eye. Invest. Ophthalmol. Vis. Sci. 48: 509–515, https://doi.org/10.1167/iovs.06-0866.Search in Google Scholar PubMed
Kayano, T., Sasaki, Y., Kitamura, N., Harayama, N., Moriya, T., Dayanithi, G., Verkhratsky, A., and Shibuya, I. (2019). Persistent Na+ influx drives L-type channel resting Ca2+ entry in rat melanotrophs. Cell Calcium 79: 11–19, https://doi.org/10.1016/j.ceca.2019.02.001.Search in Google Scholar PubMed
Kelemen, B., Lisztes, E., Vladar, A., Hanyicska, M., Almassy, J., Olah, A., Szollosi, A.G., Penzes, Z., Posta, J., Voets, T., et al.. (2020). Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochem. Pharmacol. 174: 113826, https://doi.org/10.1016/j.bcp.2020.113826.Search in Google Scholar PubMed
Kelemen, B., Pinto, S., Kim, N., Lisztes, E., Hanyicska, M., Vladar, A., Olah, A., Penzes, Z., Shu, B., Vriens, J., et al.. (2021). The TRPM3 ion channel mediates nociception but not itch evoked by endogenous pruritogenic mediators. Biochem. Pharmacol. 183: 114310, https://doi.org/10.1016/j.bcp.2020.114310.Search in Google Scholar PubMed PubMed Central
Kleene, S.J., Siroky, B.J., Landero-Figueroa, J.A., Dixon, B.P., Pachciarz, N.W., Lu, L., and Kleene, N.K. (2019). The TRPP2-dependent channel of renal primary cilia also requires TRPM3. PLoS One 14: e0214053, https://doi.org/10.1371/journal.pone.0214053.Search in Google Scholar PubMed PubMed Central
Kozuka, T., Chaya, T., Tamalu, F., Shimada, M., Fujimaki-Aoba, K., Kuwahara, R., Watanabe, S.I., and Furukawa, T. (2017). The TRPM1 channel is required for development of the rod ON bipolar cell-AII amacrine cell pathway in the retinal circuit. J. Neurosci. 37: 9889–9900, https://doi.org/10.1523/jneurosci.0824-17.2017.Search in Google Scholar
Krahn, M.P., Rizk, S., Alfalah, M., Behrendt, M., and Naim, H.Y. (2010). Protocadherin of the liver, kidney, and colon associates with detergent-resistant membranes during cellular differentiation. J. Biol. Chem. 285: 13193–13200, https://doi.org/10.1074/jbc.m109.080051.Search in Google Scholar
Krügel, U., Straub, I., Beckmann, H., and Schaefer, M. (2017). Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 158: 856–867, https://doi.org/10.1097/j.pain.0000000000000846.Search in Google Scholar PubMed PubMed Central
Kutty, R.K., Samuel, W., Boyce, K., Cherukuri, A., Duncan, T., Jaworski, C., Nagineni, C.N., and Redmond, T.M. (2016). Proinflammatory cytokines decrease the expression of genes critical for RPE function. Mol. Vis. 22: 1156–1168.Search in Google Scholar
Lambert, S., Drews, A., Rizun, O., Wagner, T.F., Lis, A., Mannebach, S., Plant, S., Portz, M., Meissner, M., Philipp, S.E., et al.. (2011). Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 286: 12221–12233, https://doi.org/10.1074/jbc.m110.202945.Search in Google Scholar
Li, J., Leng, Y., Han, S., Yan, L., Lu, C., Luo, Y., Zhang, X., and Cao, L. (2018). Clinical and genetic characteristics of Chinese patients with familial or sporadic pediatric cataract. Orphanet J. Rare Dis. 13: 94, https://doi.org/10.1186/s13023-018-0828-0.Search in Google Scholar PubMed PubMed Central
Liu, J., Zhao, M., Chen, Z., Xu, Y., Guo, L., Wang, S., Li, Y., Shi, B., Zhang, X., and Jin, X.D. (2021). TRPM3 channel activation inhibits contraction of the isolated human ureter via CGRP released from sensory nerves. Life Sci. 268: 118967, https://doi.org/10.1016/j.lfs.2020.118967.Search in Google Scholar PubMed
Lotsch, J., Kringel, D., Geisslinger, G., Oertel, B.G., Resch, E., and Malkusch, S. (2020). Machine-learned association of next-generation sequencing-derived variants in thermosensitive ion channels genes with human thermal pain sensitivity phenotypes. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21124367.Search in Google Scholar PubMed PubMed Central
Moore, C., Gupta, R., Jordt, S.E., Chen, Y., and Liedtke, W.B. (2018). Regulation of pain and itch by TRP channels. Neurosci. Bull. 34: 120–142, https://doi.org/10.1007/s12264-017-0200-8.Search in Google Scholar PubMed PubMed Central
Mulier, M., Van Ranst, N., Corthout, N., Munck, S., Vanden Berghe, P., Vriens, J., Voets, T., and Moilanen, L. (2020). Upregulation of TRPM3 in nociceptors innervating inflamed tissue. eLife 9, https://doi.org/10.7554/eLife.61103.Search in Google Scholar PubMed PubMed Central
Oberwinkler, J., Lis, A., Giehl, K.M., Flockerzi, V., and Philipp, S.E. (2005). Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J. Biol. Chem. 280: 22540–22548, https://doi.org/10.1074/jbc.m503092200.Search in Google Scholar
Oberwinkler, J. and Philipp, S.E. (2014). Trpm3. Handb. Exp. Pharmacol. 222: 427–459, https://doi.org/10.1007/978-3-642-54215-2_17.Search in Google Scholar PubMed
Ohashi, K., Shibasaki, K., Nakazawa, H., Kunimasa, R., Nagayasu, K., Shirakawa, H., and Kaneko, S. (2021). Transient receptor potential melastatin 3 is functionally expressed in oligodendrocyte precursor cells and is upregulated in ischemic demyelinated lesions. Biol. Pharm. Bull. 44: 181–187, https://doi.org/10.1248/bpb.b20-00510.Search in Google Scholar PubMed
Papanikolaou, M., Lewis, A., and Butt, A.M. (2017). Store-operated calcium entry is essential for glial calcium signalling in CNS white matter. Brain Struct. Funct. 222: 2993–3005, https://doi.org/10.1007/s00429-017-1380-8.Search in Google Scholar PubMed PubMed Central
Paricio-Montesinos, R., Schwaller, F., Udhayachandran, A., Rau, F., Walcher, J., Evangelista, R., Vriens, J., Voets, T., Poulet, J.F.A., and Lewin, G.R. (2020). The sensory coding of warm perception. Neuron 106: 830–841, e833, https://doi.org/10.1016/j.neuron.2020.02.035.Search in Google Scholar PubMed PubMed Central
Quallo, T., Alkhatib, O., Gentry, C., Andersson, D.A., and Bevan, S. (2017). G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. eLife 6, https://doi.org/10.7554/eLife.26138.Search in Google Scholar PubMed PubMed Central
Ragozzino, F.J., Arnold, R.A., Fenwick, A.J., Riley, T.P., Lindberg, J.E.M., Peterson, B., and Peters, J.H. (2021). TRPM3 expression and control of glutamate release from primary vagal afferent neurons. J. Neurophysiol. 125: 199–210, https://doi.org/10.1152/jn.00229.2020.Search in Google Scholar PubMed PubMed Central
Reinke, Y., Behrendt, M., Schmidt, S., Zimmer, K.P., and Naim, H.Y. (2011). Impairment of protein trafficking by direct interaction of gliadin peptides with actin. Exp. Cell Res. 317: 2124–2135, https://doi.org/10.1016/j.yexcr.2011.05.022.Search in Google Scholar PubMed
Samuel, W., Jaworski, C., Postnikova, O.A., Kutty, R.K., Duncan, T., Tan, L.X., Poliakov, E., Lakkaraju, A., and Redmond, T.M. (2017). Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol. Vis. 23: 60–89.Search in Google Scholar
Schneider, F.M., Mohr, F., Behrendt, M., and Oberwinkler, J. (2015). Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur. J. Cell Biol. 94: 420–427, https://doi.org/10.1016/j.ejcb.2015.06.005.Search in Google Scholar PubMed
Shiels, A. (2020). TRPM3_miR-204: a complex locus for eye development and disease. Hum. Genom. 14: 7, https://doi.org/10.1186/s40246-020-00258-4.Search in Google Scholar PubMed PubMed Central
Silverman, H.A., Chen, A., Kravatz, N.L., Chavan, S.S., and Chang, E.H. (2020). Involvement of Neural transient receptor potential channels in peripheral inflammation. Front. Immunol. 11: 590261, https://doi.org/10.3389/fimmu.2020.590261.Search in Google Scholar PubMed PubMed Central
Su, S., Yudin, Y., Kim, N., Tao, Y.X., and Rohacs, T. (2021). TRPM3 channels play roles in heat hypersensitivity and spontaneous pain after nerve injury. J. Neurosci. 41: 2457–2474, https://doi.org/10.1523/jneurosci.1551-20.2020.Search in Google Scholar
Takayama, Y., Derouiche, S., Maruyama, K., and Tominaga, M. (2019). Emerging Perspectives on pain management by modulation of TRP channels and ANO1. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20143411.Search in Google Scholar PubMed PubMed Central
Terrell, A.M., Anand, D., Smith, S.F., Dang, C.A., Waters, S.M., Pathania, M., Beebe, D.C., and Lachke, S.A. (2015). Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes. Exp. Eye Res. 131: 42–55, https://doi.org/10.1016/j.exer.2014.12.011.Search in Google Scholar PubMed PubMed Central
Thebault, S. (2021). Minireview: insights into the role of TRP channels in the retinal circulation and function. Neurosci. Lett. 765: 136285, https://doi.org/10.1016/j.neulet.2021.136285.Search in Google Scholar PubMed
Thompson, B.A., Dear, K., Donaldson, E., Nixon, R., and Winship, I.M. (2022). A novel candidate gene in autosomal dominant facial pruritus. Clin. Exp. Dermatol. 47: 184–186, doi:https://doi.org/10.1111/ced.14883.Search in Google Scholar PubMed
Toth, B.I., Konrad, M., Ghosh, D., Mohr, F., Halaszovich, C.R., Leitner, M.G., Vriens, J., Oberwinkler, J., and Voets, T. (2015). Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J. Gen. Physiol. 146: 51–63, https://doi.org/10.1085/jgp.201411339.Search in Google Scholar PubMed PubMed Central
Uchida, K., Fukuta, N., Yamazaki, J., and Tominaga, M. (2019). Identification and classification of a new TRPM3 variant (γ subtype). J. Physiol. Sci. 69: 623–634, https://doi.org/10.1007/s12576-019-00677-6.Search in Google Scholar PubMed PubMed Central
Van Hoeymissen, E., Held, K., Nogueira Freitas, A.C., Janssens, A., Voets, T., and Vriens, J. (2020). Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. eLife 9, https://doi.org/10.7554/eLife.57190.Search in Google Scholar PubMed PubMed Central
Vandewauw, I., De Clercq, K., Mulier, M., Held, K., Pinto, S., Van Ranst, N., Segal, A., Voet, T., Vennekens, R., Zimmermann, K., et al.. (2018). A TRP channel trio mediates acute noxious heat sensing. Nature 555: 662–666, https://doi.org/10.1038/nature26137.Search in Google Scholar PubMed
Vangeel, L., Benoit, M., Miron, Y., Miller, P.E., De Clercq, K., Chaltin, P., Verfaillie, C., Vriens, J., and Voets, T. (2020). Functional expression and pharmacological modulation of TRPM3 in human sensory neurons. Br. J. Pharmacol. 177: 2683–2695, https://doi.org/10.1111/bph.14994.Search in Google Scholar PubMed PubMed Central
Vastagh, C., Solymosi, N., Farkas, I., and Liposits, Z. (2019). Proestrus differentially regulates expression of ion channel and calcium homeostasis genes in GnRH neurons of mice. Front. Mol. Neurosci. 12: 137, https://doi.org/10.3389/fnmol.2019.00137.Search in Google Scholar PubMed PubMed Central
Vriens, J., Held, K., Janssens, A., Toth, B.I., Kerselaers, S., Nilius, B., Vennekens, R., and Voets, T. (2014). Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat. Chem. Biol. 10: 188–195, https://doi.org/10.1038/nchembio.1428.Search in Google Scholar PubMed
Vriens, J., Owsianik, G., Hofmann, T., Philipp, S.E., Stab, J., Chen, X., Benoit, M., Xue, F., Janssens, A., Kerselaers, S., et al.. (2011). TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70: 482–494, https://doi.org/10.1016/j.neuron.2011.02.051.Search in Google Scholar PubMed
Vriens, J. and Voets, T. (2019). Heat sensing involves a TRiPlet of ion channels. Br. J. Pharmacol. 176: 3893–3898, https://doi.org/10.1111/bph.14812.Search in Google Scholar PubMed PubMed Central
Wagner, T.F., Loch, S., Lambert, S., Straub, I., Mannebach, S., Mathar, I., Dufer, M., Lis, A., Flockerzi, V., Philipp, S.E., et al.. (2008). Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat. Cell Biol. 10: 1421–1430, https://doi.org/10.1038/ncb1801.Search in Google Scholar PubMed
Weatherbee, B.A.T., Barton, J.R., Siddam, A.D., Anand, D., and Lachke, S.A. (2019). Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Exp. Eye Res. 188: 107787, https://doi.org/10.1016/j.exer.2019.107787.Search in Google Scholar PubMed PubMed Central
Webster, C.M., Tworig, J., Caval-Holme, F., Morgans, C.W., and Feller, M.B. (2020). The impact of steroid activation of TRPM3 on spontaneous activity in the developing retina. eNeuro 7, https://doi.org/10.1523/ENEURO.0175-19.2020.Search in Google Scholar PubMed PubMed Central
Wei, H., Chen, Z., Koivisto, A., and Pertovaara, A. (2021). Spinal mechanisms contributing to the development of pain hypersensitivity induced by sphingolipids in the rat. Pharmacol. Rep. 73: 672–679, https://doi.org/10.1007/s43440-020-00207-x.Search in Google Scholar PubMed PubMed Central
Xie, M.X., Cao, X.Y., Zeng, W.A., Lai, R.C., Guo, L., Wang, J.C., Xiao, Y.B., Zhang, X., Chen, D., Liu, X.G., et al.. (2021). ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat. Commun. 12: 1401, https://doi.org/10.1038/s41467-021-21731-1.Search in Google Scholar PubMed PubMed Central
Xie, M.X., Zhang, X.L., Xu, J., Zeng, W.A., Li, D., Xu, T., Pang, R.P., Ma, K., and Liu, X.G. (Eds.) (2019). Nuclear factor-κB Gates Nav1.7 Channels in DRG neurons via protein-protein interaction. iScience. 19: 623–633. doi: https://doi.org/10.1016/j.isci.2019.08.017.10.1016/j.isci.2019.08.017Search in Google Scholar PubMed PubMed Central
Xu, T., Zhang, X.L., Ou-Yang, H.D., Li, Z.Y., Liu, C.C., Huang, Z.Z., Xu, J., Wei, J.Y., Nie, B.L., Ma, C., et al.. (2017). Epigenetic upregulation of CXCL12 expression mediates antitubulin chemotherapeutics-induced neuropathic pain. Pain 158: 637–648, https://doi.org/10.1097/j.pain.0000000000000805.Search in Google Scholar PubMed
Yajima, T., Sato, T., Shimazaki, K., and Ichikawa, H. (2019). Transient receptor potential melastatin-3 in the rat sensory ganglia of the trigeminal, glossopharyngeal and vagus nerves. J. Chem. Neuroanat. 96: 116–125, https://doi.org/10.1016/j.jchemneu.2019.01.005.Search in Google Scholar PubMed
Yudin, Y. and Rohacs, T. (2019). The G-protein-biased agents PZM21 and TRV130 are partial agonists of mu-opioid receptor-mediated signalling to ion channels. Br. J. Pharmacol. 176: 3110–3125, https://doi.org/10.1111/bph.14702.Search in Google Scholar PubMed PubMed Central
Zhang, X.L., Ding, H.H., Xu, T., Liu, M., Ma, C., Wu, S.L., Wei, J.Y., Liu, C.C., Zhang, S.B., and Xin, W.J. (2018). Palmitoylation of delta-catenin promotes kinesin-mediated membrane trafficking of Nav1.6 in sensory neurons to promote neuropathic pain. Sci. Signal. 11, https://doi.org/10.1126/scisignal.aar4394.Search in Google Scholar PubMed
Zhang, Y., Su, Q., Lian, Y., and Chen, Y. (2019). Botulinum toxin type A reduces the expression of transient receptor potential melastatin 3 and transient receptor potential vanilloid type 4 in the trigeminal subnucleus caudalis of a rat model of trigeminal neuralgia. Neuroreport 30: 735–740, https://doi.org/10.1097/wnr.0000000000001268.Search in Google Scholar PubMed
Zhao, P.Y., Gan, G., Peng, S., Wang, S.B., Chen, B., Adelman, R.A., and Rizzolo, L.J. (2015). TRP channels localize to subdomains of the apical plasma membrane in human fetal retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 56: 1916–1923, https://doi.org/10.1167/iovs.14-15738.Search in Google Scholar PubMed PubMed Central
Zhao, S. and Rohacs, T. (2021). The newest TRP channelopathy: gain of function TRPM3 mutations cause epilepsy and intellectual disability. Channels 15: 386–397, https://doi.org/10.1080/19336950.2021.1908781.Search in Google Scholar PubMed PubMed Central
Zhao, S., Yudin, Y., and Rohacs, T. (2020). Disease-associated mutations in the human TRPM3 render the channel overactive via two distinct mechanisms. eLife 9, https://doi.org/10.7554/eLife.55634.Search in Google Scholar PubMed PubMed Central
Zhou, Y., Bennett, T.M., and Shiels, A. (2021). Mutation of the TRPM3 cation channel underlies progressive cataract development and lens calcification associated with pro-fibrotic and immune cell responses. FASEB. J. 35: e21288, https://doi.org/10.1096/fj.202002037r.Search in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: GBM Young Investigators (Part 4)
- Highlight: Young research groups in Germany – 4th edition
- Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq
- On the reproducibility of enzyme reactions and kinetic modelling
- Structures and nucleic acid-binding preferences of the eukaryotic ARID domain
- Transfer RNA processing – from a structural and disease perspective
- Eukaryotic tRNA splicing – one goal, two strategies, many players
- Starting the engine of the powerhouse: mitochondrial transcription and beyond
- Yme2, a putative RNA recognition motif and AAA+ domain containing protein, genetically interacts with the mitochondrial protein export machinery
- Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology
- TRPM3 in the eye and in the nervous system – from new findings to novel mechanisms
- Identification of cytokeratin24 as a tumor suppressor for the management of head and neck cancer
Articles in the same Issue
- Frontmatter
- Highlight: GBM Young Investigators (Part 4)
- Highlight: Young research groups in Germany – 4th edition
- Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq
- On the reproducibility of enzyme reactions and kinetic modelling
- Structures and nucleic acid-binding preferences of the eukaryotic ARID domain
- Transfer RNA processing – from a structural and disease perspective
- Eukaryotic tRNA splicing – one goal, two strategies, many players
- Starting the engine of the powerhouse: mitochondrial transcription and beyond
- Yme2, a putative RNA recognition motif and AAA+ domain containing protein, genetically interacts with the mitochondrial protein export machinery
- Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology
- TRPM3 in the eye and in the nervous system – from new findings to novel mechanisms
- Identification of cytokeratin24 as a tumor suppressor for the management of head and neck cancer